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Abstract

3D generation has made significant progress, however, it
still largely remains at the object-level. Feedforward 3D
scene-level generation has been rarely explored due to the
lack of models capable of scaling-up latent representation
learning on 3D scene-level data. Unlike object-level gen-
erative models, which are trained on well-labeled 3D data
in a bounded canonical space, scene-level generations with
3D scenes represented by 3D Gaussian Splatting (3DGS)
are unbounded and exhibit scale inconsistency across dif-
ferent scenes, making unified latent representation learning
for generative purposes extremely challenging. In this pa-
per, we introduce Can3Tok, the first 3D scene-level varia-
tional autoencoder (VAE) capable of encoding a large num-
ber of Gaussian primitives into a low-dimensional latent
embedding, which effectively captures both semantic and
spatial information of the inputs. Beyond model design,
we propose a general pipeline for 3D scene data process-
ing to address scale inconsistency issue. We validate our
method on the recent scene-level 3D dataset DL3DV-10K,
where we found that only Can3Tok successfully general-
izes to novel 3D scenes, while compared methods fail to
converge on even a few hundred scene inputs during train-
ing and exhibit zero generalization ability during inference.
Finally, we demonstrate image-to-3DGS and text-to-3DGS
generation as our applications to demonstrate its ability
to facilitate downstream generation tasks. Project page:
hitps://github.com/Zerg-Overmind/Can3Tok

1. Introduction

Realistic 3D Scene-level generation enables immersive
AR/VR applications. While tremendous progress has been
made in 3D object-level generation using various 3D rep-
resentations [16, 19, 45, 48, 65], with significant improve-
ments ranging from per-scene optimization to feedforward
approaches, less research has focused on 3D scene-level
generation. Pioneering works such as WonderJourney [78]
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Figure 1. Reconstruction results from the latent space of 3D Gaus-
sian splats (3DGS) of a general scene using our Can3Tok and other
3D-based VAE models [50, 53]. Can3Tok effectively preserves the
global shape and local details while existing methods often fail to

model the structured latent space from unstructured 3DGS.

and LucidDreamer [9] generate 3D scene content without
training on 3D scene-level data. However, their per-scene
optimization is time-consuming, prone to to texture satura-
tion, and lacks 3D consistency due to the using of 2D dif-
fusion models. Our approach explores realistic feedforward
3D scene-level generation by directly training on real 3D
data. Conceptually, it aligns with the idea of Stable Diffu-
sion [55], which enables conditional generation by aligning
different modalities (e.g., text and 2D images) within the
same latent space for controllable generation. Since the dif-
fusion process and architectures such as UNet or DiT [47]
are well-known to be grounded, the key bottleneck we iden-
tified in feedforward 3D generation is the development of
a 3D VAE for learning scene-level latent representations.
However, we find this to be non-trivial, as scene-level con-
tent is not merely a combination of multiple object-level el-
ements but also includes the background, scene layout, and
the relative position, scale, and orientation of objects.

In this paper, we explore to learn a new VAE that can
project 3D data into a structured latent space. 3D Gaus-
sian Splatting [25] (3DGS) is an emerging 3D represen-
tation that describes a scene as a set of Gaussians with a
few parameters such as position, scaling values, and etc.
One might wonder, is it still possible to build a latent space
for many input 3DGS scene representations that are decod-
able with existing 3D-based VAE models, such as PointNet
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VAE? Our experiments revealed that existing VAEs cannot
reconstruct the input 3DGS as shown in Fig. 1, where the
original scene structure is completely washed out as shown
in Fig. 2.

The fundamental reasons include 1) the data structure of
3DGS is not compatible with existing VAE models: It is,
in nature, highly unstructured due to its heterogeneous fea-
tures (i.e., representing geometry, appearance, and lighting)
and irregularity like point clouds. Unlike object-level 3DGS
representations that either have high quality multi-view ren-
dered images from synthetic data [12] or well-captured 360-
degree images from real world [79], the hallucination in
3DGS of a general scene is prominent due to insufficient
multi-view observations during per-scene optimization, as
shown in Fig. 2. Additionally, the large number of 3D Gaus-
sians in a 3D scene makes it challenging to achieve a low-
dimensional latent embedding. 2) Secondly, 3DGS repre-
sentation of each scene has different global scene scales and
also the individual scaling values of each 3D Gaussian prim-
itive, making scaling up representation learning over a large
number of 3DGS scene representations difficult.

We address the first problem by introducing a new 3DGS
VAE module called Can3Tok, which tokenizes 3DGS in-
puts into canonical 3D tokens in a transformer-based VAE
framework. To embed diverse and unstructured 3DGS rep-
resentations with a large number of Gaussian primitives into
a compact latent space, we first employ cross-attention with
a low-dimensional learnable query, encoding 3DGS repre-
sentations into a small-sized tensor to enhance the efficiency
of subsequent self-attention computations. The learnable
query is initialized with the coordinates of a regular volume
in canonical space, introducing a structured geometry prior
that facilitates representation learning on irregular data.

Due to the inconsistent scale over scenes introduced by
the structure-from-motion initialization, we found that even
a powerful VAE model alone fails to converge on more
than a thousand input scene representations. In contrast,
previous works on representation learning and generation
for 2D images or 3D object-level tasks do not encounter
this issue, as their data either naturally has a fixed size
or resolution or is consistently bounded within a uniform
scale [5, 12]. Therefore, we propose 3DGS normaliza-
tion to unify both global scene scale and three-dimensional
scaling values of all 3D Gaussian primitives. To further
enhance quality and mitigate the impact of 3DGS tokens
from hallucinated scene regions, we filter out noisy areas in
the 3DGS reconstruction caused by insufficient supervision
during per-scene optimization. This is achieved through se-
mantic segmentation guidance [28] and K-nearest propaga-
tion among 3D Gaussian primitives, allowing us to extract
only the cleanest and most salient scene partitions for train-
ing the VAE.

We validate our design using the same training and test-
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Figure 2. Example of unstructured 3DGS representation of a scene
(left) and its decoding results using PointNet-based VAE [50, 51]
(right). 3DGS is highly unstructured in continuous and irregular
3D continuum where it often includes many floaters for the region
with insufficient multi-view observations.

ing splits from DL3DV-10K [35], an open-source scene-
level dataset. We found that only our Can3Tok success-
fully converges on 3D scenes in training and generalizes
well to unseen input scenes in inference, whereas other
convolutional-based and transformer-based methods, with
more parameters and network layers than Can3Tok, fail to
converge on even a few hundred scenes in training and ex-
hibit no generalization ability to unseen inputs in inference.

Our ablation study highlights the benefits from each pro-

posed component for reconstruct local details. We show that

our latent space could serve as a prototype for future 3DGS
generative tasks such as text-to-3DGS or image-to-3DGS
generation. In summary, our main contributions include:

* We propose Can3Tok, the first VAE model that tokenizes
the scene-level 3DGS data into the canonical tokens by
cross attention, enabling an unified latent representation
learning that significantly outperforms existing VAEs;

* We propose a comprehensive data processing framework
for 3DGS representation, including normalization to ad-
dress scale inconsistency for large-scale training, as well
as semantic-aware filtering and data augmentation to en-
hance output quality;

* We showcase feedforward image-guided and text-guided
scene-level 3DGS generation as applications of our
Can3Tok.

2. Related Work

3D Gaussian Splatting. 3D Gaussian splatting
(3DGS) [25] has become one of the most popular 3D
representations due to its flexibility and faster rendering
than neural radiance fields (NeRF) [44]. Its discrete nature
can be greatly beneficial for tokenization and feed-forward
3D reconstruction with only a few or even single image
inputs [61, 62, 82]. 3DGS is akin to a point cloud and
enables per-pixel parameter prediction and lifting [14, 82]
for novel-view synthesis like SynSin [74]. Advance-
ments have been specifically designed for large-scale and
complex scene reconstruction [7, 26, 34, 38], real-time
rendering [46] and anti-aliasing [32, 80].

However, since 3DGS encompasses richer geometric and
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Figure 3. Can3Tok processes a batch of per-scene 3D Gaussians, with a batch size of B, where each scene contains the same number of
Gaussians N. The encoder encodes input Gaussians into a low-dimensional latent space followed by a VAE reparametrization. And the
decoder reconstructs the embeddings back into 3D space, corresponding to the original input 3D Gaussians.

appearance features and offers greater parameter flexibility
than conventional point clouds, directly integrating diffu-
sion modules for generation is non-trivial. Recent explo-
rations in 3D Gaussian embedding [40, 53] and rearrange-
ment [81] have focused on converting raw 3D Gaussian rep-
resentations into more structured forms through voxeliza-
tion or low-level encoding since diffusion models such as
UNet and DiT cannot learn a denoising process. These ap-
proaches are currently limited to small-scale or object-level
content.

Latent-Space Modeling. Structured latent space mod-
eling across various data modalities, including images,
videos, audio, and 3D representations, has been a long-
standing problem for its advantages in compression, effi-
ciency, and generalizability. Especially in generative tasks,
the mapping between different input modalities is typically
achieved through alignment in latent space, as seen in mod-
els like CLIP [52] for text-image alignment. Principal com-
ponent analysis (PCA) [59] is widely used to compress the
data in any modality into low-dimensional features by lin-
ear dimensionality reduction techniques. To improve the
efficiency and compactness, researchers have explored a
non-linear approach by learning a neural network for each
specific data modality: Variational autoencoder (VAE) [27]
is now a prototype neural architecture to project 2D visual
data such as image [68] or video [84] into the latent space
under an encoder-decoder framework supervised by recon-
struction loss and KL-divergence loss [2]. Such VAE frame-
work is also applicable to 1D audio [39] or 3D volume
data [3] realized by multi-layer perceptrons (MLP) [1] or
3D convolutional neural networks (3DCNN) [67], respec-
tively. To model the latent space for the unstructured 3D
point clouds, PointNet [49, 50] and PointTransformer [83]
were two representative architectures leveraging MLP lay-
ers and attention mechanisms, respectively. In the recent
generative Al paradigm, many efforts have been made to
combine all those modality in the sharable latent space,
considering them as unique tokens to augment the gener-
ation quality and generation spectrum by multimodal learn-

ing [72, 73]. While 3DGS is emerging 3D representation,
no prototype model for its latent space modeling has yet
been actively explored where the application of existing 3D-
based VAE highly suffers from the significant unstructured-
ness of 3DGS mentioned above.

Object-Level 3D Generation. Object-level 3D content
generation has achieved significant success in many appli-
cations, e.g., 3D mesh generation [16] and texturing [42],
and point-cloud generation [45]. With the tremendous
progress made by 2D diffusion models, more diverse and
high-fidelity 3D generation emerges by combining im-
plicit 3D representations [44] with 2D- or 3D-aware dif-
fusion priors [17, 20, 37, 48, 55, 58]. Several follow-up
works [65, 66, 76] use 3DGS as an alternative to NeRF for
faster rendering. More impressively, transformer-based ar-
chitectures [13, 19, 21-24, 70] significantly boost the speed,
scalability, and quality of 3D generation [30, 75, 85] and
token prediction [6, 60] without any online optimization.
While impressive, all those methods are specially designed
for a complete object whose application to a general 3D
scene often fail due to the complexity gap between ob-
jects and scenes e.g. scale-inconsistency and partial ob-
servations, which lead researchers to explore the generative
framework uniquely designed for a general scene.

Scene-Level 3D Generation. Scene-level 3D generation
usually refers to large-scale or even unbounded 3D content
creation. One exceptional example is perpetual view gen-
eration [31, 36], which allows for view-consistent video
or 3D generation with an arbitrary long camera trajec-
tory. Besides these auto-regressive approaches, some ef-
forts [9, 15, 18, 33, 77, 78], enhance global consistency
by directly incorporating various 2.5D or 3D cues such as
depth, normal, and point cloud into 3D representations such
as meshes, NeRFs, or 3DGS for rendering. Though impres-
sive, these methods mostly inherit cumbersome optimiza-
tion in an iterative manner, Moreover, all recent advance-
ments in scene-level 3D generation rely on 2D supervision,
either from images or 2D diffusion models, making feed-
forward generation unfeasible without a low-dimensional



embedding for large-scale 3D representations. In this work,
we propose Can3Tok for scalable 3DGS embedding that be
directly combined with widely-used diffusion architectures
for feed-forward 3D generation without image-space super-
vision.

3. Our Approach
3.1. 3DGS Preliminaries

Given multi-view images with associated camera parame-
ters, a 3D scene depicted in the images can be represented
by a set of elliptical 3D primitives, each with an internal
radiance field that follows a Gaussian distribution. An in-
dividual 3D Gaussian primitive has several parameters, in-
cluding its 3D center x € R3, rotation represented by a
quaternion r € R*, opacity o € R!, scaling s € R?, view-
independent RGB color ¢ € R?, and view-dependent color
with high-dimensional spherical harmonics c;, € R".

3.2. Can3Tok Design

Can3Tok is a transformer-based VAE architecture compris-
ing an encoder and a decoder. The encoder maps the tok-
enized 3DGS to a latent space, and the the decoder recon-
structs the original input 3DGS data. The design of our VAE
model is illustrated in Fig. 3.

Encoder. The inputs to the encoder is a set of 3DGS
data. Similarly to the positional encoding in NeRF [43],
we apply Fourier positional encoding on 3D Gaussian cen-
ters y(x) : RV*3 — RNXLB with a pre-set maximum
band Lp to better capture high-frequency components in
a low-dimensional embedding. While theory and experi-
ments [44, 64] have validated the effectiveness of this po-
sitional encoding approach on MLP-based networks, it has
also proven effective across a broader range of architectures
including transformers [6, 21, 22, 60, 85]. Since the 3DGS
representation is unstructured, we append more structured
“anchors” as representative locations to each 3D Gaussian,
to reduce the burden of the encoder representation learn-
ing: We build a volume on the space of 3D Gaussians with
resolution V2 and apply the same Fourier positional en-
coding on the voxel center nearest to each 3DGS position
y(v) : RNX3 5 RNXL5  Please also refers to our supple-
mentary materials for the effect of nearest voxel coordinates
appending. While appending voxel coordinates is not cru-
cial to Can3Tok’s success, we find that it enhances output
quality, particularly in level-of-detail.

The encoder takes per-scene 3DGS information G €
RN*(2xLe+C) including v(x), v(v), and other 3D Gaus-
sian parameters, where NV is the number of Gaussians per
each scene and C' is the size of 3DGS feature dimension.
The encoder starts with a linear layer that maps the inputs
into key and value, and they are tokenized by a cross-
attention that takes in the key, value, and a learnable canon-

ical query, inspired by PerceiverlO [21]. This is because
an input scene has more than 10k 3D Gaussians, making
the naive self-attention computationally expensive. Impor-
tantly, the canonical query is initialized with regular voxel
grids and associated descriptors, i.e., query € RMx(P+Q)
where M is the number of canonical voxels, P denotes
voxel’s position, and @ is the size of the descriptors, and
further optimized during the training of Can3Tok. The sub-
sequent 8 blocks of self-attention are applied to the tokens
to explore the affinities or any other relationships among la-
tents while preserving its dimension unchanged.

Latent space. Following the common VAE design [27],
the outputs from our encoder are projected into two latent
vectors representing mean £ and log-variance log 2. The
corresponding embedding z is sampled with the VAE repa-
rameterization trick:

z = p+ €% exp(0.5 x log o?) (1

where € ~ N(0,1) is sampled from a normal distribution.

Decoder. As shown in Fig. 3, the decoder takes latent
samples z and recovers 3DGS parameters G Sougpu through
a linear layers and 16 blocks of self-attention. Unlike Per-
ceiverlO [22], which is designed for the prediction on a dis-
crete target domain, our decoder does not have a pre-defined
output query as we aim for the reconstruction in continuous
3D space. To this end, the decoder’s tail includes multiple
linear layers with non-linear activation function for map-
ping a latent space into 3D continuum. Although the multi-
layer perceptron at the end of the Can3Tok decoder has only
a limited number of learnable parameters, both its inputs
and outputs are within a bounded space, making the latent-
to-3D mapping feasible and less computationally burden-
some.

Training Objective. We follow the common setting of
training a VAE [27]. The objective for our model optimiza-
tion is to minimize the following loss:

[, = DiSt(GSoutput7 GSinput) + >\£KL (ZaN(O7 I)) (2)

where G'Sippue are input 3D Gaussian representations and
the scalar A balances two losses: Dist measures the L2
distance between the recovered 3DGS and the ground truth
3DGS across all different feature channels, and L7, is the
KL divergence between the latent space z and a normal dis-
tribution A/ (0, I) so as to have a structured distribution.

3.3. 3DGS Processing

A fundamental challenge in scaling up VAE models lies in
the scale inconsistency across different 3DGS scene repre-
sentations as we found that none of the existing methods, in-
cluding our Can3Tok, can generalize well to a large number
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Figure 4. Before and after our semantic-aware 3DGS filtering.

of scene-level 3DGS representations. Since neither global
scene scales or scaling factors of each 3D Gaussian primi-
tive are not metric as the using of COLMAP [56] for camera
pose estimation and 3D SfM point triangulation, we pro-
pose to unify 3DGS representations into a bounded scale
for scaling up training and semantic-aware filtering for im-
proving the reconstruction quality of model outputs.

Normalization. Since there are no established techniques
for scalable 3D Gaussian representation learning, we take
inspiration from 2D image representation learning [41, 71],
where the size of all input images are the same and their
RGB channels are normalized into a bounded coherent scale
(e.g., [-1,1]) has proven effective for accelerating model
convergence and generalization. Specifically, to apply nor-
malization to 3DGS data, we mean-shift the 3DGS centers
x to the origin of world space, and bound all 3DGS into a
sphere with radius r while we also re-scale the scaling fac-
tor s of each 3DGS to become §:

n
1
translate = —— g X,
n-
=1
r
scale =

max |x + translate|s * 1.1’

X = (x + translate) * scale,

T, = (T; + translate) * scale, 3)

where T; and ’i‘l are center locations of cameras that asso-
ciate to the training views of 3DGS scene representations.
Unlike the RGB channels of 2D images, we preserve all
other 3DGS attributes during normalization, as they are het-
erogeneous and retain their physical meaning only within
their original numerical range. The intuition behind Eq. 3
is that: If the same transformation is applied to the cam-
era centers associated with the same 3DGS representations,
transforming T; into T; while keeping the camera orien-
tation unchanged, then images rendered from the 3DGS
before normalization, using the original camera view with
center position T;, will be identical to those rendered from
the 3DGS after normalization, using the same camera view
but with the re-scaled position Ti. Therefore, another ben-
efit of the proposed 3DGS normalization is that we can re-
cover the metric scales of scenes by estimating metric depth
on images rendered from our generated outputs using depth
foundation models.

3DGS training data without filtering
Figure 5. Noise-dominated 3DGS training data hurts the latent-
space modeling of Can3Tok where meaningful local details largely
collapse, which motivate us to have clean scene-level 3DGS data
with semantics-aware filtering.

Can3Tok outputs

Semantic-aware Filtering. 3DGS reconstructions from
general scenes often contain noise artifacts like floaters due
to the lack of visual observations (unlike objects which are
normally captured with sufficient views). Though Can3Tok
can effectively compress 3DGS inputs as latent representa-
tions, we experimentally found that such noise deteriorates
the latent representation where high-frequency details are
washed out in the decoded 3DGS output as shown in Fig. 5.
To address this issue, we apply semantic-guided filtering
to the raw 3DGS input to subsample as-clean-as-possible
3DGS primitives. Specifically, we apply LangSam [28], a
text-guided variant of segment anything model, on the mid-
dle frame of each scene video with the text prompt “the
most salient region”. LangSam crops out the most seman-
tically meaningful region depicted in the image. We pick
one Gaussian within the segmentation mask and incremen-
tally include more Gaussians based on a K-NN algorithm in
3D space until reaching a pre-set number N. As shown in
Fig. 4, such semantic filtering can preserve the most seman-
tically meaningful contents while removing the less salient
and noisy Gaussians.

4. Experiments

4.1. Implementation Details

Dataset: We run 3DGS on all videos from DL3DV-10K
dataset [35] (with 6:1 training/testing split), where camera
positions and SfM points are obtained by COLMAP [57] for
3DGS initialization. We set N = 100K for each scene rep-
resentation by applying an upper bound on Gaussian densi-
fication and pruning during per-scene optimization.

Data Augmentation: We apply random SO(3) rotations to
input 3DGS representations to get more G'Sjp,py+ as a way
of data augmentation, similarly to the common random-
rotation augmentation on 2D images.

Architecture: We implement our encoder with 1 linear
layer, 1 cross-attention block, 8 self-attention blocks, and 2
linear layers for mapping latents at the bottleneck into mean
and log-variance. Our decoder starts with one linear layer
followed by 16 self-attention blocks and ends with 3 linear
layers. Self- and cross-attention blocks are of multi-head
with 12 heads and 64 dimensions each, implemented us-
ing Flash-Attention [11]. Layer normalization is appended



Table 1. Quantitative comparison on DL3DV-10K testing set (with
filtering). Lo error measures the distance between each pair of
G Souput and G Sinput 0ver the test set. Failure rate is the percentage
of cases where the model completely fails to reconstruct the input
3D Gaussians.

| Ly error | Failure rate]

L3DG [53] 1200.4 100%
PointNet VAE [50] 1823.0 100%
PointTtransformer [83] 230.7 70%
Ours 30.1 2.5%

Table 2. Quantitative comparisons and ablation studies on
DL3DV-10K testing set. Lo error measures the distance between
each pair of G Soupue and G'Sinpu: Over the test set. Failure rate is
the percentage of cases where the model completely fails to recon-
struct the input 3D Gaussians.

| Ly error | Failure rate|

Ours (w/o Learnable Query) 1025 100%
Ours (w/o normalization) 1889.7 100%
Ours (w/o voxel appending) 50.5 4.3%
Ours (w/o data filtering) 73.3 6.1%
Ours (w/o data augmentation) 53.3 4.6%
Ours (full) | 301 2.5%

to each linear layer and attention block. Latent query has
size Q € R?56x768  Mean p, log-variance log o2, and
z are in € R4x64%4 which has exactly the same size as
the latent space of Stable Diffusion [54]. The output from
Fourier positional encoding has size Lp = 51, specifically
y(x) : RV*3 — RN>51 Input volume has resolution
V = 40. We set the loss hyper-parameters to A = 1 x 1076,
Each scene has the same number N = 40K of Gaussians
after semantics-aware filtering. We train our model on 8
A100 GPUs for 5 days. A single forward pass for encoding
and decoding an input 3D scene with our model takes only
~0.06 sec, making it compatible with a diffusion module
for feedforward generation, as we demonstrate later.

4.2. Baselines and Metrics

We compare our VAE model to existing 3D-based VAE
models. L3DG [53] is a recent method for object-level
3DGS encoding and decoding. We implement L3DG and
other convolution-based architectures with Minkowski En-
gine [8] and spconv [10] following L3DG paper. We also
compare with a PointNet-based autoencoder [50] with more
network layers to increase its model capacity. Another base-
line method is PointTransformer [83], which is a popu-
lar transformer-based architecture. All compared methods
are trained and tested on the same train and test sets from
DL3DV-10K [35] with the same data processing as train-
ing our Can3Tok, to evaluate if they can accurately gener-
alize to unseen input 3DGS. Since 3D Gaussians have more

parameters than simple location coordinates, we use aver-
age Lo-norm across all 3DGS features between each pair
of GSoutput and G Sippy; On the test set as an evaluation met-
ric. Moreover, we measure the failure rate, defined as the
percentage of cases in which the model completely fails to
reconstruct the input 3D Gaussians, as shown in Fig. 6 and
more qualitative results in the supplementary material.

4.3. Results

In our experiments, PointNet and L3DG cannot even con-
verge with more than 500 3D scenes while PointTrans-
former performs slightly better but still produces poor vi-
sual quality. As shown in Tab. 1, these methods fail to gen-
eralize to unseen 3D scenes with 100% failure rate, while
our design shows great potential for its scalability with low
Lo error and failure rate. The failure rate is defined as
the percentage of scenes whose Ly error of reconstruction
exceeds 1000.0, which are completely not recognizable as
shown in Fig. 6. Our model successfully reconstructs orig-
inal input 3DGS, and neither convolution- or transformer-
based methods are able to succeed in decoding the 3DGS
scenes by losing the original global shape and local details.
While PointTransformer [83] outperforms L3DG and Point-
Net in terms of L error and failure rate, the reconstructions
show stretched and distorted patterns on all test samples.
Qualitative results shown in Fig. 6 and supplementary ma-
terials are general and not cherry picked. This failure mode
observed in convolution-based VAEs is also highlighted in
the concurrent work Bolt3D [63].

4.4. Latent-Space Analysis

It remains inconclusive why our proposed method gen-
uinely captures structured and meaningful 3D geometric
patterns within the representation instead of merely mem-
orizes the input 3DGS. This question cannot be fully an-
swered by quantitative metrics and qualitative comparisons
in spatial domain.

Spatial Encoding: Therefore, we highlight our structured
latent space by exploring the spatial relationship between
inputs and the associated latent embeddings via t-SNE [69]
visualization shown in Fig. 7. We encode a 3DGS scene
with different SO(3) rotations into latent embeddings in in-
ference stage. Even though no explicit constraints on latent
space were applied during training, our method automati-
cally discovers the spatial correlation between inputs and la-
tent embeddings. While other baseline methods mix up the
same scene under different 3D orientations and other scenes
in latent space. Therefore the decoder is fail to correctly de-
code latents back to different 3DGS representations.
Semantic Encoding: We also highlight the ability of our
latent representation to abstract semantic information of in-
puts instead of merely memorizing all 3D Gaussians. In
Fig. 8, subfigures are two different 3D Gaussian filterings
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Figure 6. Qualitative comparisons between ours and other VAE outputs. Results are not cherry picked as all compared methods show zero
generalization ability on novel scene inputs. PointNet and L3DG do not converge on training set.
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Figure 7. t-SNE visualizations of the latent space of 3DGS for the
same scene with 36 linearly interpolated SO(3) rotations from 0 to
360 degrees. All three rotations exhibit patterns of closed loops,
demonstrating that our model preserves spatial information in the
latent representations. In (e) and (f), red dots are latent embed-
dings of the same scene but with 200 random SO(3) rotations and
blue dots are latent embeddings of different scenes.

or croppings from raw 3D Gaussians but covering the same
3D contents (some outdoor chairs and desks on the ground
together with a wall), while two samples are from a com-
pletely different scene. In latent space, latent embeddings
from the same scenes are close to each other (black dots),
and along with other different scenes (gray dots) are far
away. Additionally, the different SO(3) rotations of the
same scene can be close to each other in latent space as
shown in Fig. 7 as they are semantically similar.
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Figure 8. Given 3DGS reconstruction for various scenes, we ran-
domly subsample 3DGS similar to the semantics-aware filtering in
Sec. 3.3; and demonstrate the t-SNE of their latent space. The la-
tent spaces from same scenes, visualized in red and images,
are closer each other, and otherwise for other scenes.

4.5. Ablation Study

We study the effectiveness of each proposed module and
technique. Please refer to Tab. 2 for the quantitative abla-
tions. Also, we describe the qualitative results and the de-
tailed settings of ablation study in the supplementary mate-
rials, which include 1) without learnable query, 2) no 3DGS
normalization, 3) no 3DGS data filtering, 4) no voxel coor-
dinates appending, 5) no data augmentation.

In Fig. 5, We demonstrate that semantic-aware data fil-
tering is essential for capturing high-frequency details of
3DGS in the latent space, as it mitigates the negative im-
pact of training a VAE model with imperfect 3DGS recon-
struction results. Since learning raw 3DGS with floaters
and noise deteriorates the high-frequency correlation be-
tween the input 3DGS and the latent space. Consequently,
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Figure 9. Two examples of text-conditioned generation with a latent diffusion UNet, which is trained on our 3DGS embeddings of scenes
and corresponding text prompts. The scene labels are shown in the captions, and the images are rendered with camera positions around
the generated 3DGS by denoising the latents z passing through our Can3Tok decoder. T denotes the denoising time step. Please note that,
while the images are rendered from a fixed camera viewpoint, the global 3DG structures are shifting during the denoising process, which

lead to the viewpoint-shifting sensation.
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Figure 10. A pipeline for text-conditioned latent diffusion model
for 3D Gaussian generation using Can3Tok latent embeddings.
The pretrained image-captioning, text-encoder and Can3Tok de-
coder modules are frozen during training the denoising UNet
model. Snow labels denote the pre-trained models.

without the proposed data filtering, Lo increases, as shown
in Tab. 2. More importantly, while Can3Tok is the only
method capable of converging on thousands of training
samples, it fails to generalize to unseen test data with-
out 3DGS normalization (w/o normalization). This reveals
that a well-designed model alone cannot address the unique
scale-inconsistency issue in scene-level 3D representations.

4.6. Application

We showcase that our 3DGS latent embedding could be use-
ful for various generative tasks including text-guided and
image-guided 3DGS generations.

Text-to-3DGS Generation. As shown in Fig. 10, we train
a diffusion UNet for mapping a noise vector sampled from a
normal distribution into a meaningful 3D Gaussian embed-
ding z, conditioned on text prompts. Since the DL3DV-10K
dataset lacks labels or scene text descriptions for scenes, we
caption the middle frame of each video to label each scene
where we use a pre-trained BLIP model [29] whose output
text prompts are consistently concise and capture salient se-
mantic information. After this labeling, we train the diffu-
sion model on (text label, z) pairs. At inference, the UNet
samples a zp ~ N(0, I) from normal distribution and tries
to denoise it with 7" steps to approach zy = z, conditioned
on a text scene label. We showcase the denoising process of
two inference examples in Fig. 9.

Image-to-3DGS Generation. In the supplementary doc-
ument, we also showcase that our 3DGS latent embed-
ding can be combined with existing image regression mod-
ules [4] to enable image-guided 3DGS generation. To this
end, we train the encoder that regresses the image to our
3DGS latent space, and we use Can3Tok decoder to con-
struct the associated 3DGS outputs. Please refer to the sup-
plementary for the visual results.

4.7. Limitations

As shown in 2, our method did not achieve a 100% success
rate. This is due to some low-quality 3DGS reconstructions
in the training set. We observed that some videos used for
3DGS reconstruction suffer from severe motion blur and an
imbalanced distribution of close-up and distant views dur-
ing data capture. As a result, the corresponding latent repre-
sentations become less discriminative and tend to mix with
those of other 3D scenes. Besides, our method is limited to
the 3DGS representation, as it is more discrete and suited
for tokenization than other neural representations.

5. Conclusion

We introduce Can3Tok, the first method for scene-level
3DGS latent representations, demonstrating that all exist-
ing approaches fail without a model design and proper 3D
data normalization specifically tailored to the 3DGS rep-
resentation. Through latent space analysis, qualitative and
quantitative comparisons, we show that our method signifi-
cantly outperforms existing 3D VAE models. Additionally,
we propose a 3DGS data processing approach to address
the open problem of scale inconsistency in 3D representa-
tions. To further enhance quality and scalability, we intro-
duce semantic-aware filtering and data augmentation. Fi-
nally, we showcase the practical utility of Can3Tok in 3D
generative applications, including text-guided and image-
guided 3D generation with 3DGS representation.
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