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Fig. 1. We introduce automatic boundary sampling for discontinuities in differentiable shaders. Given a shader that renders a piecewise-continuous output, we
first transform it into a surrogate, piecewise-constant shader (shown on the left). This transformation enables our method to sample jump discontinuities by
evaluating the shader along randomly selected line segments. We call this approach segment snapping; it removes the need for specialized boundary-sampling
routines, which are tedious to implement and often ill-defined. Our method unlocks a variety of new applications (shown on the right).

We present a novel method to differentiate integrals of discontinuous func-
tions, which are common in inverse graphics, computer vision, and machine
learning applications. Previous methods either require specialized routines
to sample the discontinuous boundaries of predetermined primitives, or
use reparameterization techniques that suffer from high variance. In con-
trast, our method handles general discontinuous functions, expressed as
shader programs, without requiring manually specified boundary sampling
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routines. We achieve this through a program transformation that converts
discontinuous functions into piecewise constant ones, enabling efficient
boundary sampling through a novel segment snapping technique, and accu-
rate derivatives at the boundary by simply comparing values on both sides
of the discontinuity. Our method handles both explicit boundaries (polygons,
ellipses, Bézier curves) and implicit ones (neural networks, noise-based func-
tions, swept surfaces). We demonstrate that our system supports a wide
range of applications, including painterly rendering, raster image fitting,
constructive solid geometry, swept surfaces, mosaicing, and ray marching.

CCS Concepts: « Computing methodologies — Rendering; - Mathemat-
ics of computing — Differential calculus.
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1 INTRODUCTION

A wide class of inverse problems in graphics, vision, and machine
learning can be solved by computing the derivative of integrals:
Vo [ f(x,0)dx. Traditional automatic differentiation methods can
produce incorrect results when the integrand f is discontinuous,
since they ignore the Dirac delta distribution that arises from differ-
entiating step discontinuities, which needs to be integrated. We call
this integral over Dirac delta a boundary integral since it integrates
over the boundary of the discontinuities. In this work, we propose a
new method for numerically estimating the derivative of integrals
that enables us to derive an automatic differentiation method that
is applicable to an extremely wide range of problems (Fig. 1).

The boundary integral requires a different numerical estimator
than the original integral and can be challenging to evaluate. For
sampling, the Monte Carlo estimator needs to be aware of the deci-
sion boundaries. The differentiable rendering literature has exten-
sively studied Monte Carlo estimators for computing derivatives of
discontinuous functions under integral sign [Li et al. 2018, 2020; Ban-
garu et al. 2020; Loubet et al. 2019; Zhang et al. 2020]. However, these
estimators are specialized to particular rendering problems and are
not straightforward to generalize outside of the original problem
setting. Even handling programmable shaders with discontinuities
in existing differentiable renderers can be very challenging [Zhao
et al. 2020]. Recently, a class of differentiable programming lan-
guages emerged that generalizes these derivative estimators to a
broader class of problems [Bangaru et al. 2021; Michel et al. 2024;
Yang et al. 2022]. However, these languages are either still restricted
by the class of programs that can be differentiated, require extensive
user guidance on the sampling routines, or introduce non-negligible
approximations to the derivative computation.

We propose a general automatic differentia-
tion algorithm that “just works” with discontinu-
ities, as long as the decision boundary itself is dif-
ferentiable. We implement our algorithm inside
a standard shader programming language [Ban-
garu et al. 2023]. We focus on low-dimensional
integrals (2D or 3D). Our method is based on
two key components that go hand-in-hand. The first is an auto-
matic shader transformation (right inset) that turns a piecewise
continuous shader into a piecewise constant one.

The shader transformation enables our
second key component, segment snapping
(left inset), to perform automatic bound-
ary detection by randomly sampling line
segments in the integration domain, and
checking whether the two end points are in
the same region. Once we obtain the bound-
ary samples by a bisection search along the segments, we perform
kernel density estimation to compute the probability density of the
samples for Monte Carlo integration. Moreover, the appropriate
difference in function values on both sides can be computed simply
by comparing values on both sides of the branch in the shader pro-
gram. Our method is theoretically consistent, enjoys low variance,
and scales to complex decision boundaries with a large number of
conditions. Our program transformation fully happens at compile
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Fig. 2. Taxonomy. Previous work in boundary derivative computation can
be classified into two approaches: boundary sampling and area sampling.
Boundary sampling methods achieve high accuracy with fewer samples
(red points) but are limited by their requirement for specialized sampling
routines. In contrast, area sampling methods offer greater generality in the
functions they can differentiate, but require higher sampling rates to do so.
Our method eliminates the need for specialized routines while maintaining
the efficiency of boundary sampling, making it applicable to a broader range
of discontinuous functions.

time. It preserves the original program structure, which facilitates
modularity [Michel et al. 2024] while maintaining efficiency. The
generality of our method unlocks a wide range of applications that
were not possible before.

Our contributions are:

e A program transformation that converts discontinuous shaders
into surrogate shaders with piecewise-constant outputs, en-
abling reliable detection of parametric discontinuities.

e A segment snapping approach that enables boundary sam-
pling for general discontinuous functions without requiring
specialized sampling routines.

e A practical implementation in SLANG.D that allows users
to write discontinuous shaders with automatic derivative
computation.

o Applications including non-photorealistic rendering, inverse
rendering with a diverse set of primitives, shadow art, and
inverse brush design. (Fig. 1).

2 RELATED WORK

We review the different types of numerical methods in the context
of computing the derivative (with respect to 0) of a discontinuous
function f (x, §) after integration (with x) given by V¢ [, f(x,6)dx.
Fig. 2 shows an illustration of different classes of methods. The
two main categories of methods are area sampling and boundary
sampling: area sampling methods place samples across the entire do-
main, and boundary sampling methods place samples at the decision
boundaries.

Automatic differentiation of non-differentiable functions. Auto-
matic differentiation [Griewank and Walther 2008] has been proven
to be correct almost everywhere if the function itself is differentiable



almost everywhere [Lee et al. 2020; Kakade and Lee 2018]. However,
these analyses do not consider distributional derivatives [de Amorim
and Lam 2022] that appear when differentiating an integral over
discontinuous functions—in such a case, automatic differentiation
can lead to incorrect results even when the integral is differentiable
everywhere [Bangaru et al. 2021; Lew et al. 2023; Michel et al. 2024].
Intuitively, this is because the conditions inside if statements are
ignored in standard automatic differentiation, and these conditions
are required to reason about how the decision boundary moves.
Arya et al. [2022] address differentiation of the expectation of dis-
crete randomness using score estimators [Mohamed et al. 2020]
with correlated sampling to significantly reduce variance, but this
method has limited application to reverse-mode automatic differ-
entiation. Suh et al. [2022] discussed the consequences of ignoring
discontinuities in control applications.

Blurring the discontinuities. A commonly used method to remove
discontinuities in programs is to transform them into smooth grad-
ual changes (Fig. 2b). This has been used to make, e.g., sorting,
differentiable [Qin et al. 2010; Berthet et al. 2020]. A few differ-
entiable rasterizers [de La Gorce et al. 2011; Liu et al. 2019; Laine
et al. 2020] also applied this strategy. For programs, this can be
formulated as a convolution of a discontinuous program over a
smooth function [Chaudhuri and Solar-Lezama 2010; Kreikemeyer
and Andelfinger 2023]. Furthermore, there is a class of derivative-
free optimization methods that blur the discontinuities in parameter
space (0) instead of over the integration domain (x), also effectively
removing the discontinuities [Staines and Barber 2012; Rechenberg
and Eigen 1973; Le Lidec et al. 2021; Fischer and Ritschel 2023; Deliot
et al. 2024].

Unfortunately, these methods risk biasing the gradients by chang-
ing the function being differentiated. Choosing the blurring strength
automatically is challenging: strong blurring removes details, and
weak blurring leads to sparse derivatives. Derivative-free meth-
ods further face scalability issues when the parameter space is
high-dimensional. Our method does not suffer from these issues by
avoiding blurring altogether, directly sampling the boundary, and
being used in combination with reverse mode automatic differentia-
tion [Griewank and Walther 2008].

Boundary sampling. The boundary sampling methods (Fig. 2e)
place samples explicitly on the decision boundaries, directly solv-
ing the boundary integral [Li et al. 2018; Lee et al. 2018]. Existing
boundary sampling methods all require a way to parameterize and
sample on the boundary. For piecewise linear discontinuities, this
can be easily automated [Lee et al. 2018; Bangaru et al. 2021] (Fig. 2f)
However, when the decision boundaries become more complex, it is
often required to design a problem-specific parameterization of the
decision boundary. For example, Li et al. [2020] designed specialized
solvers for differentiable vector graphics rendering, whereas Zhang
et al. [2020] specialize for path-space differentiable rendering. Spe-
cialized adaptive importance sampling strategies [Yan et al. 2022;
Zhang et al. 2023] or Markov-chain Monte Carlo mutation [Xu et al.
2024] have been proposed too. Our method belongs to the boundary
sampling class, but does not require specialized sampling routines
tailored to a specific type of boundary. This enables applications
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Fig. 3. Discontinuous function and its boundary derivative. The discontinu-
ous function f (a) is constructed using a branching operator that selects
between two functions m, n (d,e) based on the sign of a scalar condition
g (b,c). Formally, f is defined as f(x, 8) = m(x,0) when g(x,0) > 0 and
f(x,0) = n(x,0) when g(x, ) <0, exhibiting a jump discontinuity at the
boundary defined by the zero level set of g. When g(x, 6) is differentiable
in 6, perturbation in 6 induces a change in f’s boundaries (f), pushing them
inwards (red) or outwards (blue). The associated derivative is the boundary
derivative integral dgl Eq. (3).

that were difficult before, e.g., differentiating decision boundaries
encoded by an implicit coordinate neural network.

Area sampling. Since sampling the boundary can be difficult, some
recent works [Loubet et al. 2019; Bangaru et al. 2020, 2022; Vicini
et al. 2022; Zeltner et al. 2021; Xu et al. 2023] instead convert the
boundary integral back to its original domain by constructing an
appropriate velocity field and applying the divergence theorem, or
equivalently, applying a reparameterization of the area integral to re-
move discontinuities (Fig. 2c). The integral in its original domain can
then be estimated without any boundary sampling. Unfortunately, as
we show in the results, the commonly used harmonic-interpolation-
based velocity fields often suffer from high (and sometimes infinite)
variance. A-§ [Yang et al. 2022], on the other hand, derives an ap-
proximated area sampling solution by sampling on a grid and using
neighboring information to detect boundaries (Fig. 2d). Unfortu-
nately, when the grid sampling frequency is lower than the discon-
tinuities’ frequency, their approximation often leads to significant
bias in the gradient. Our method is boundary sampling based, has
low variance, and is theoretically consistent, and as such, it does
not suffer from these issues.

3 MOTIVATION AND BACKGROUND

We are interested in applications that involve parametric integrals
I(0) with discontinuous integrands, f(x,0) : Q x RF - R%:

10) = [ fxi0)dx. 8
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Fig. 4. Overview. Our method automatically samples a discontinuous function’s boundary to estimate the boundary derivative integral, Eq. (3). Starting with a
piecewise-continuous function (a) whose program source code is provided as input, we perform a function transformation to remove its continuous variation

and turn it into a piecewise-constant function (b) in a preprocessing step. We use this function to sample points on the boundary by snapping line segments on
to it (c). Next, we map the boundary samples to their branching operator in code (d), estimate the density of the points on the boundary (e), and evaluate the
integrand on both sides of the boundary (f). Finally, we put all these together and estimate the boundary derivative integral in a single reverse-mode pass (g).

We assume the integration domain Q to be in a low-dimensional
Euclidean space, i.e., Q c R{123} The parameter set 0 € RF is a
vector of arbitrarily large dimension k. Given a set of measurements
(samples of the integrand) for I (e.g., the pixel integral in Fig. 3a), we
wish to recover an optimal set of parameters 6 (e.g., the positions
of the enveloped disks). By the Reynolds transport theorem [1903],
the gradient VyI is a sum of two terms:

Vol = fQ Vof(x:0) dx + dp1,. @

The first integral, i.e., interior term, is computed using standard
autodiff. The second term is a boundary integral that is evaluated
over the discontinuities 9Q

é)glb:j(;Q](x,@)dx:faQ (f(x*.0) - F(x~,0)) dgx1 dx. (3)

Estimating the integrand, or boundary derivative
J(x,0), involves three key steps: (i) drawing sam-
ples on the discontinuous boundary 0Q; (ii) effi-
ciently computing the normal component of the
boundary velocity dyx,, for all components of 6;
and (iii) evaluating the integrand difference at the
boundary, f(x") - f(x7), where the points x* = lim._, ¢+ x + €#
are on either side of the boundary with unit normal 7.

The main challenge is to formulate an explicit and well-defined
routine to draw samples on the boundary 9Q. We propose a method
to address this for a large class of functions, described next.

0
f(x7,0)
°¥.

S dpx s

£ 0)

4 METHOD

We introduce an automatic boundary sampling method to estimate
the boundary derivative integral in Eq. (3). Our method assumes
access to the full program source code that defines a discontinuous
function f using branching operators (i.e., if-else conditionals).
Figure 3 illustrates how this simple code structure can be used to
identify discontinuities. Our method rests on two key ideas: (i) trans-
form piecewise-continuous functions (Fig. 4-a) into surrogate func-
tions (Fig. 4-b) with piecewise-constant output (§4.2), and (ii) snap
randomly sampled line segments onto the discontinuities using a bi-
section method to detect the boundary (Fig. 4-c, §4.3). We associate
each boundary sample to the corresponding branching operator
(Fig. 4-d, §4.4). Then, we estimate the boundary sampling density
(Fig. 4-e, §4.5), evaluate the integrand on the boundary (Fig. 4-f,
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§4.6), and estimate the boundary velocity (Fig. 4-g) to compute the
boundary derivative integral (§4.7).

4.1 Discontinuous integrands and scope

We require that f be represented as a directed acyclic graph (DAG)
G = (V,E), with discontinuities expressed as if-else constructs,
which is a mild requirement that subsumes most practical shaders,
as visualized in Fig. 5b. Our method uses static analysis to identify all
unique branching operations. The evaluation point and parameters
(x,0) act as the source nodes in the graph. The interior nodes can
be of one of the following two types: differentiable operations in a
predetermined set D, such as +, *, sin, exp, etc.; or discontinuity-
inducing branching operators:

h(x,0) ifg(x,0)>0

h™(x,0) @

B(x,0) = { .
otherwise.

B selects among its two successor nodes h* based on the value of
its scalar predecessor g, called the boundary function (the discon-
tinuity is at g(x, 8) = 0). B is equivalent to an if-else statement.
To compute the boundary velocity dgx., we require g(x,0) to be
differentiable almost everywhere!, i.e., all nodes in ¢’s subgraph
are differentiable, and that ||dxg|| > 0. Equivalently, g’s subgraph
includes no type-B nodes. As g is continuous, its zero-level set 9Q
forms a closed curve in 2D (or a closed surface in 3D), which we will
use to detect discontinuities (§4.3). There are no such restrictions
on h*, which allows us to nest B operators (Fig. 5).

Let B; and g; be the i-th B operator and branch function. The set
of discontinuous boundaries 9Q is the union of all locations x such
that g;(x,0) = 0 and B; is executed:

B :
Q) = {x| vi_y gi(x,0) = 0 ABjis executed} . (5)

1

4.2 Piecewise-constant surrogate for boundary detection

The fundamental challenge in detecting discontinuities is that changes
in function values can arise from either continuous variations or
discontinuous boundaries. This ambiguity makes it impossible to re-
liably detect discontinuities by examining only the function values.
Our solution is to derive a piecewise-constant surrogate function
fpc that is a graph-coloring transform of f (Fig. 4-b). It preserves the

1. . . . .
g is allowed to be discontinuous on a set of measure zero, as we discuss in §5
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Fig. 5. Piecewise-constant transformation. We transform a piecewise-continuous function (a), represented as a DAG (b), into a piecewise-constant function (e)
through a source-code transformation (c,d) that tracks the result of all branching decisions (if conditions) as the function is evaluated in a ternary vector
(with values x,0, 1 corresponding to true branch, false branch and branch not reached).

graph structure (the discontinuity curves 9Q), eliminates continu-
ous variation, and ensures that neighboring regions have unique
identifiers (Fig. 5). Both functions f and fyc share the same discon-
tinuities, arising from the evaluation paths dictated by a sequence
of branching decisions. Let m be the number of B operators. We
represent the piece-wise constant function output fpc(x) at a given
point x using a ternary state vector sx = (s; )%, where each element
s; is defined as follows:

x  branch i not evaluated,
si = 40 predicate of branch i evaluated as true, 6)

1 predicate of branch i evaluated as false.

In a single forward program pass, our method tracks each branching
predicate that is evaluated and updates the corresponding element in
the state vector according to Eq. (6). Figure 5 illustrates this process.
Importantly, a single evaluation of fyc at x is linear in the number
m of branches; unlike A-§, we do not evaluate all branches. Each
continuous region of f is uniquely identified by a base-3 integer,
that is: every x in the region, fpc(x) evaluates to the same state
vector. This transformation removes all continuous variations from
f, thereby facilitating robust boundary sampling (§4.3).

4.3 Sampling the boundary by segment snapping

We sample the boundary by point-sampling our piecewise constant
function fpc (Fig. 4c). We can reliably detect when a line segment
crosses a discontinuity by comparing the function values at the
segment’s endpoints (Fig. 6). If these values differ, we know with
certainty that the segment intersects a boundary. We can then fur-
ther localize the boundary efficiently using a bisection search.

Initialization. We start with an initial set of line segments uni-
formly distributed over Q. Each segment is created by generating
a set of stratified jittered points over a grid as the first endpoint,
then adding a second endpoint at a fixed distance (equal to the ini-
tial grid spacing) in a random direction.? This grid is used only for
segment initialization, the final function evaluation is performed at

*The segment length can also be a random variable 1[0, 1/gridsize], which ensures
all points on the boundary are sampled with non-zero probability; in practice we found
this to not be necessary for our applications.

7

\

Iteration 1 Iteration 2 Iteration N

Fig. 6. Segment snapping. Starting with a set of randomly initialized line
segments (left), we evaluate the piecewise-constant function f_pc at both
of its endpoints. If the values differ, we know that the segment intersects
a discontinuity, which we localize using bisection search (right). If the
segment crosses multiple discontinuities, we may localize points on multiple
boundaries (right-top). If the values are the same, we discard the segment;
this may miss thin regions, but we have found it to not be a major limitation
in practice.

the boundary after snapping, unlike A-§ [Yang et al. 2022], which
operates on the initial regular-grid points.

Bisection search. Now, for each segment, we evaluate fpc at both
endpoints. If the values differ, indicating a boundary crossing, we
split the segment at its midpoint and recursively apply the same
process to the two spawned halves. This bisection search continues
until the segment length becomes sufficiently small (typically after
about 15 iterations, reducing the original width by a factor of 2715,
at which point the midpoint provides an accurate sample of the
boundary location. Figure 6 illustrates this process.

4.4 Branch index detection

After locating points on the discontinuity boundary via segment
snapping, our method determines which B operator defines the
boundary through each point (Fig. 4d). This information supports
three tasks: (i) computing boundary velocity through automatic
differentiation; (ii) estimating the sample density required by our
Monte Carlo estimator of the boundary integral in Eq. (10); and
(iii) evaluating the integrand on both sides of the boundary.

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.



209:6 + Yash Belhe, Ishit Mehta, Wesley Chang, lliyan Georgiev, Michaél Gharbi, Ravi Ramamoorthi, and Tzu-Mao Li

Fig. 7. Assigning image-space boundary samples to branch indices. Segment
snapping produces samples on the discontinuous boundaries of the function
f; however, we only know each sample’s coordinates in image space. In
order to compute the boundary derivative, we must also identify the index
of the branch operator B; whose boundary each sample lies on. To do this,
we use the fact that the boundary of B; is the zero level set of its boundary
function g; (x; 0). Therefore, we associate each boundary point with the
branch i for which |g; (x; 0)| is minimal during function evaluation.

For each boundary point x, we know that it must lie on the zero
level set of some implicit function g; corresponding to a B operator.
In theory, we should have g;(x;0) = 0 for the correct operator.
However, due to numerical precision in floating-point arithmetic
and due to finite number of bisection steps in segment snapping, the
point may not lie exactly on the boundary. Therefore, we identify
the responsible B operator by finding the index i that minimizes
|gi (x;0)| during function evaluation. We visualize branch index
detection in Fig. 7.

This approach does not require exhaustive evaluation of all bound-
ary functions (for example, we do not evaluate g; for branches that
are not taken), only those that are encountered during f’s evalua-
tion path for a particular input are tested. While in theory multiple
boundary functions close to zero may result in incorrect branch
detection, in practice we have found it to be mostly not an issue; we
further discuss this and a failure case in §6.

Our approach not only provides the index of the relevant B oper-
ator but also gives us access to the value of g;, which we maintain
in the automatic differentiation computation graph; it is essential
for computing g;’s derivatives needed for the boundary velocity.

4.5 Probability density estimation

The distribution of points on the boundary resulting from segment
snapping is not uniform in general, as it depends on both the initial
line segment distribution and the boundary geometry 9Q. To ac-
count for this non-uniformity in our Monte Carlo estimator of the
boundary derivative integral, we estimate the probability density
of the samples using kernel density estimation (Fig. 4e). For each
boundary point, we compute the probability density based on its
local neighborhood. Specifically, when the domain is 2D, for a point
x on the boundary, we estimate its probability density as

k1

) 7
n2Rk ()

p(x) =

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.

where the hyperparameter k is the number of nearest neighbors, n is
the total number of samples, and Ry is the distance to the k-th nearest
neighbor [Mack and Rosenblatt 1979]. This estimator is biased but
consistent [Berry and Sauer 2017]. We discuss its properties and
extensions to more dimensions in Appendix A.

4.6 Two-sided integrand evaluation by program transform

The boundary derivative at each point x on the boundary depends
on the value of the integrand f on either side of the boundary. Prior
work [Li et al. 2018, 2020] evaluates this by finding two points (x*
and x~) on opposite sides of the boundary and computing f(x*)
and f(x~). However, this approach requires carefully choosing an
offset € along the normal direction, which can be inaccurate when
the boundary is highly curved or when the integrand varies rapidly
near the boundary.

Instead, we transform f again, this time to evaluate both sides
exactly at the boundary point (Fig. 4f). For a boundary point x cor-
responding to branch operator i, we create a transformed function
that takes an additional input sign € {+, -} and forces the branch
operator to take the corresponding path regardless of the sign of
gi(x). As shown in List. 7, this is implemented by overriding the
branch condition for the identified operator, allowing us to evaluate
both sides of the discontinuity exactly at the boundary point.

4.7 Boundary velocity and derivative computation

We now have all the components necessary to compute the boundary
derivative. First, the set of points {x;}/~; on the boundary 9Q by
snapping line segments to the boundary (§4.3). Second, the sampling
probabilities {p; } -, for these points, computed using kernel density
estimation (§4.5). Third, the integrand difference f(x;,0) - f(x; ,8)
for each boundary point (§4.6). We now discuss how to compute
the boundary velocity together with the boundary derivative.

The boundary velocity dgx, represents how a point x € 9Q moves
in response to changes in the parameter 6. The implicit function
theorem relates dgx, to the derivatives of the boundary function
gi(x;0), given by

_ 9pgi(x)
lloxgi ()|’

and we assume ||dxgi(x)|| > 0 everywhere. g only needs to be
differentiable almost everywhere; its first derivative can have jump
discontinuities, which we exploit in some applications §5.

Although the implicit function theorem gives us Eq. (8), we do not
compute dgg;(x) directly for each boundary point (or each branch)
since this would require multiple reverse-mode passes. Instead, we
compute g;(x)/||9xgi(x)|| and leave g;(x) in the numerator undif-
ferentiated. dxg;(x) is computed using forward-mode autodiff.
Now, substituting the boundary velocity from Eq. (8) in the bound-
ary derivative integral Eq. (3), we get

dpx1 = 8)

- 2 0) - Fx—0)) 209(X)
== [ (6150 - F(7:0) 2Esae )

We can now simultaneously compute the boundary velocity and
derivative using the sampled points and applying reverse-mode



autodiff with respect to the parameters 6 to the expression

n x;r,e - x{,@ X
aelb“ADe{i; & )pif( ! Iazg(i(x)iﬂ} "

To ensure the correct boundary velocity (and derivative) is com-
puted, we only propagate the gradients backward through g;(x;)
(which results in dgg; (x;) once differentiated) and “detach” all other
terms (in autograd terms). This allows us to compute the boundary
derivative for all points, irrespective of the boundary they are on,
and with respect to all components of § simultaneously using only
a single reverse-mode autodiff pass.

4.8 Practical Implementation

We implement our approach as a Python-based compiler that trans-
forms discontinuous shader programs written in SLANG.D [Ban-
garu et al. 2023] supplemented with a new type of tag—[Disc] to
mark discontinuous if-else statements. Our compiler converts
the input program into another that efficiently computes boundary
derivatives. Our program transformation is fast (30ms on average
for our examples). It only requires two passes through the program’s
DAG structure. Crucially, our compilation time scales only linearly
with the number of branches, rather than enumerating all possible
evaluation paths, which scales exponentially (e.g., like A-9).

Segment snapping, probability density estimation and bound-
ary derivative computation, and the gradient-based optimization
code are implemented in PyTorch [Paszke et al. 2017]. We invoke
each of the transformed SLANG.D programs from Python during
boundary derivative computation as needed. The continuous parts
of the derivative are handled by PyTorch and SLANG.D’s automatic
differentiation system. The two systems interoperate by invoking
the SLANG.D shader’s forward and backward subroutines through
a custom PyTorch autograd function.

We provide an outline of our practical implementation in Appen-
dix B.2. We will release our source code upon acceptance.

5 RESULTS AND APPLICATIONS

We compare our method with previous boundary-derivative com-
putation methods in §5.1 and showcase several applications in §5.2.

5.1 Comparison with boundary derivative methods

Broadly, there are two approaches to computing boundary deriva-
tives, (i) boundary sampling methods [Bangaru et al. 2020; Li et al.
2020] that require specialized sampling routines, and (ii) area sam-
pling methods that make approximation errors [Yang et al. 2022;
Laine et al. 2020] or produce high-variance estimates [Bangaru et al.
2020]. With equal samples, boundary-sampling methods usually esti-
mate derivatives with greater accuracy. Ours is a boundary-sampling
method that reduces constraints on discontinuous programs. Nei-
ther does it require specialized boundary sampling routines nor
diffeomorphism constraints [Bangaru et al. 2021]. Contrary to prior
methods that are highly optimized for specific problems, our goal is
to support a wide variety of discontinuous programs.

Discontinuities with explicit sampling routines. We first consider
the simple example of computing a circle’s derivative in Fig. 8, for
which all methods compute a high quality derivative.

Automatic Sampling for Discontinuities in Differentiable Shaders + 209:7

Discontinuities without explicit sampling routines. Next, we dif-
ferentiate a more complicated program in Fig. 9. Constructing a
sampling routine for it is challenging since its boundary cannot be
expressed explicitly, which limits our comparisons to area-sampling
methods. Discontinuity blurring requires careful tuning of the blur-
ring width for accurate gradients and the warp field induces high
variance for WAS. A-§ and our method handle this example well.

Area sampling cannot resolve high-frequency features at low sam-
pling rates. Area-sampling methods can be accurate when the sam-
pling rate is high relative to the integrand’s variations (Figs. 8 and 9).
However, their accuracy degrades significantly at lower sampling
rates. We demonstrate this with two specific cases: a) multiple dis-
continuities in close proximity in Fig. 10; b) high frequency continu-
ous variations in Fig. 11. Both limitations are expected, since without
sufficient sampling at or near the boundary, area-sampling methods
cannot resolve high-frequency features near it. Our method handles
these examples well because it samples the boundary.

A-§ struggles with a large number of discontinuities and branching.
Among current systems, A-§ typically handles the most general set
of discontinuous programs so we focus the rest of our comparisons
on it. Applications used in practice often contain a large number of
discontinuities (rasterizers) and can have large tree-like structures
(CSG trees). For the applications in §5.2 our method is able to support
we find that A-§ fails to compile most of the times because the
number of discontinuities is fairly large.

We first compare A-§ with our method and Diff VG for painterly
rendering in Fig. 12. Here, the goal is to optimize the colors, position
and radius of a set of ordered opaque disks to match a target image.
This example highlights A-§’s first limitation at larger scales — its
compiler is not well suited to a large number of discontinuous
statements (each circle corresponds to one) and times out for more
than 200 disks. On the other hand, the compilation effort required by
our system is minimal (two DAG traversals) and is independent of
the number of disks, taking ~30ms. Queries can also be accelerated
with bounding volume hierarchies (BVH) and quadtrees; we use a
regular-grid-based acceleration structure. Our implementation takes
~90s for 2000 circles, while Diff VG takes ~160s; these numbers are
only indicative of performance potential, not a direct comparison,
since Diff VG is a more complete system than our simple vector
graphics program.

The second issue is that A-§ always evaluates all branching state-
ments (see App D.3 in their paper), regardless of whether the current
evaluation point reaches them. Consider the checkerboard exam-
ple in Fig. 13, which is expressed using two binary trees. For a
query point, our method traverses the tree and evaluates exactly
one if-else statement at each level of the tree, resulting in lin-
ear runtime growth with tree depth. In contrast, A-§ evaluates all
branches at each level and its runtime grows exponentially with
tree depth, severely limiting the maximum depth it can support. At
larger depths, A-§’s derivative accuracy is also compromised since
there can be multiple discontinuities between evaluation points.

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.
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Forward Finite Differences: -2.50 Ours: -2.52 + 0.004 A-Delta: -2.56 Discontinuity blurring: -2.51 WAS: -2.51 £ 0.0002

Fig. 8. Boundary sampling routine available. In the simple example above, we compute the derivative of the integral of a circle (0 inside, 1 outside) over the
image plane with respect to its radius. Its derivative is 9,1, = —27r ~ 2.51, (r = 0.4). All methods compute it fairly accurately at equal sample count: Diff VG [Li
et al. 2020] (derivative = 2.51, not visualized) with its specialized edge sampling routine, discontinuity blurring, WAS [Bangaru et al. 2020], A-6 and ours.
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Forward Finite Differences: 0.0225 Ours: 0.0240 + 0.006 A-Delta: 0.0233 Discontinuity blurring: 0.0148 WAS: -0.150 + 3.52

Fig. 9. No explicit boundary sampling routine. In this example, the shape above does not have an easily computable boundary sampling routine, so we only
compare with area-sampling methods. Blurring the boundary has a noticably high bias, which can be reduced with a smaller blurring width, at the cost
of increased variance (determining a blurring width that works generally in general settings is non-trivial). Warped area sampling (WAS) suffers from high
variance since the complicated nature of the boundary induces a rapidly changing warp field, including high variance regions in the center away from the
boundary. Both A-§ and our method compute high-quality derivatives.
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Fig. 11. Insufficient sampling near high-frequency continuous variation. When
the integrand has high-frequency variation between the discontinuity and
the evaluation points, A-Delta’s gradient sign can flip. Discontinuity blurring
only samples regions of zero contribution. Both WAS and ours compute
derivatives with the correct sign, but WAS has higher variance.

Fig. 10. Insufficient sampling near multiple discontinuities. For the piecewise-
constant function (a), we compute derivatives of the translation of both
discontinuities (b). Using a 4x4 sampling grid (with additional samples
for segment snapping in our method), we compare different approaches.
Our method achieves accurate sampling and correct derivative signs. A-8
produces zero derivatives due to multiple discontinuities between evaluation
points, while both discontinuity blurring (e) and warped area sampling (f)
yield incorrect signs due to insufficient sampling near discontinuities.

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.
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Target i DiffVG Ours Ours: 1000 circles  Ours: 400 beziers
200 circles 2000 circles with disp. with disp.

Fig. 12.  Painterly rendering. Given a target image (left), we optimize a set of randomly initialized primtives using an Ly loss to produce a painterly renderings.
With 200 circles, all methods capture the rough structure of the target. With 2000 circles, both our method and Diff VG produce painterly renderings with lower
reconstruction error, while A-8 does not scale to the large number of primitives (Fig. 13). Unlike Diff VG, our method does not require specialized boundary
sampling routines; it supports non-standard primitives like noise-deformed circles and bezier curves (final two columns) .
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Fig. 13. Branching structures. A checkerboard pattern (a) is implemented as the sum of the outputs of two binary trees, one along each axis. Each axis has
24 — 1 discontinuities (d is the tree depth). We compute the derivative with the relative position of all discontinuities and compare its accuracy at different
sampling rates for d = 7 in (b). Up until 642 samples, A-5 computes zero derivatives because there are multiple discontinuities between all evaluation points
(Fig. 10). A-8 runs out of memory at 5122 samples; this could be because it assumes all branches are taken and evaluates all 24 nodes in the tree, irrespective of
whether they are reached. Our method consistently computes non-zero derivatives and converges to the true derivative faster than A-§. Since A-Stakes all
branches its runtime grows exponentially with d, while ours grows linearly. We normalize both method’s runtimes at depth d = 1 for visualization purposes;

our method appears to have no increase in runtime up until depth 50 because our runtime is dominated by kernel launch overhead.

5.2 Applications 5.2.1 Binary function optimization. We fit a binary-valued target
Next, we show a wide range of applications implemented using function by optimizing the parameters of a binary-valued discon-
our method. In all code listings, for conciseness, we only show the tinuous program which thresholds a bilinearly interpolated grid of
piecewise-constant transformation along with the input program values (List. 1) Since the program is binary-valued, only its bound-
(see Appendix B.2 for the keywords used in the listings). ary derivative is non-zero. When the target is provided as a set of
discrete values (like a raster image), we convert it to a continuous
| float bilerp_step(float2 x, float* p, int& region) { signal using nearest-neighbor interpolation. We do not have access
g eed s = billerp(x, theta)s /7 Bilimear to the discontinuity locations of the target.
interpolation of grid values in "p A . ) A .
5| [pisc] Figure 14 shows an example fitting a binary raster image. Fig-
«| if (s > 0.0) { // Step activation ure 15, compares with two baselines, by replacing our threshold with:
( i:tsr;PYTE?NST) region = hash(region, 0); i) a ReLU activation (clamped between 0 and 1 as done by Karnewar
73 else ¢ et al. [2022]), and ii) a sigmoid activation. We optimize an L2 loss
: i:tsrapg—gf’NST) region = hash(region, 1); as an integral over the image space with 1000 steps of the Adam
ol 3 o optimizer, tuning learning rates for each method. This takes about
|y 30 seconds for all methods. As shown by Belhe et al. [2023], the con-

tinuous ReLU and sigmoid activations blur the discontinuity. Our
method extends theirs (for binary functions) to handle the setting
where the discontinuity boundary is not known apriori and can be
optimized. The resulting output is discontinuous by construction
and accurately preserves the target’s discontinuities.

Listing 1. We optimize a binary-valued function, constructed by
thresholding a bilinearly interpolated grid, by automatically computing
its boundary derivatives.

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.
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Fig. 14. Binary raster image fitting. We start with a random initialization of a bilinearly interpolated thresholded grid, resulting in several discontinuous
islands. The boundary derivative encourages each point on these discontinuities to either move along or against the normal direction (causing the islands to

expand or shrink) to better match the target, resulting in a sharp reconstruction. See Fig. 15 for a close up comparison.

Error Image
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Fig. 15. Non-discontinuous activations blur the discontinuity. In this example,
we fit a binary-valued raster image, with three different methods, each of
which bilinarly interpolates scalar values on a grid followed by their respec-
tive activations. The sharp discontinuities in the input can only be preserved
by our method which uses a discontinuous step activation, whereas the
other two use continuous activations resulting in blurring.

Swept surfaces. We use the same shader to fit a 2D swept surface
(Fig. 17b), formed by sweeping a 2D brush along a 1D curve (Fig. 17a).
Evaluating a swept surface requires checking if the query point is in-
side the brush for multiple brush orientations along the curve, which
is computationally expensive, especially for brushes represented by
costly functions like neural SDFs. Fitting a binary-valued shader
enables fast inference, offloading the expensive inside-outside tests
to the optimization phase. Our optimization takes around 20 seconds
for 400 iterations; inference for our method takes 0.2ms for a 5122
input, 10x faster than the original swept surface (in which the brush
has 100 repeated steps along the curve).

3D inside-outside tests. The same shader extends to 3D function
fitting. We show this by fitting a 3D winding number field using
a trilinearly interpolated thresholded grid in Fig. 16. The fitting
process takes around 9 minutes for 1000 iterations. The training
time is dominated by the target evaluation on CPU; inference on
our method is fast, taking 1ms for an input of 256 points.

We can also optimize (recover) the geometry of the primitives
in a CSG tree (with a fixed topology) (Fig. 18) by expressing it as
a program. The tree of Listing 2 returns 1.0 if the evaluation point
is inside the shape and 0.0 otherwise. The SDF values are used as
boundary functions g.

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.

Initial Ours Target

Fig. 16. Fitting 3D binary functions. We fit a 3D winding number field
(thresholded at 0.5) using a trilinearly interpolated thresholded grid. Start-
ing with a randomly initialized grid (left), we optimize it to fit the target
surface (right), the final reconstruction is in the middle. We render all three
for visualization. Since we perform optimization in 3D, segment snapping,
probability density estimation and all other steps are done in 3D too.

1|// We evaluate the SDFs at each point x and store
the result in the following variables

sphere, cube, cyl_z, cyl_x, cyl_y = // SDF values

3| [Disc]

if (sphere > 0.0) { // Inside sphere

5 if (M_PW_CONST) region = hash(region, 0);

6 [Disc]

if (cube > 0.0) { // Inside cube
8 if (M_PW_CONST) region = hash(region, 2);
9 [Disc]

10 if (cyl_z < 0.09) { // Outside cylinder z

11 if (M_PW_CONST) region = hash(region, 4);

12 [Disc]

13 if (cyl_x < 0.0) { // Outside cylinder x

14 if (M_PW_CONST) region = hash(region, 6);
15 [Disc]

16 if (cyl_y < 0.0) { // Outside cylinder y
17 if (M_PW_CONST) region = hash(region, 8);
18 res[thread_idx] = 1.0;

19 return;

20 3

)1 3}

22 }

23 }

24| }

25 | return 0.0;

Listing 2. We support nested [Disc] if statements, enabling derivative
computation of CSG primitives are only differentiable almost everywhere.
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Fig. 17. 2D Swept Surface. Here, the goal is to fit the inside-outside test of a
brush swept along a curve (a) resulting in a binary-valued swept surface (e).
Similar to Fig. 15, we use a binary-valued grid to fit the target. Starting from
a random initialization (b), our method progressively improves the fit (c)
and is able to accurately fit the target (d,f), enabling much faster inference
of this swept surface.
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Fig. 18. Constructive Solid Geometry (CSG). Given a CSG tree with fixed
topology (a), we optimize the position and scale of each primitive to match
a target in 3D (d). We can match the target accurately (c) starting with
randomly perturbed initial parameters (b).

5.2.2  Non-photorealistic rendering (NPR). NPR techniques such as
mosaicing and painterly rendering abstract images using a collection
of primitives. Our method enables these applications by optimizing
the primitive’s parameters through gradient-based optimization.

Mosaicing. Image mosaicing captures the overall structure of an
image using a mosaic of tiles. While Haeberli [1990] pioneered the
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float voronoi_mosaic(float2 x, floatx p, int out) {
float3 color = 0.0;

3 float min_dist = INF;

4 // Loop over all points

5 [MaxIters(N_POINTS)]

6 for (int i = 0; 1 < N_POINTS; i++) {

float2 curr_p = float2(p[5%i], p[5*xi+1]);

8 float3 curr_color = float3(p[5*i+2], p[5*i+3],
p[5%i+4]);

9 // Check if the current point is the closest

10 [Disc]

11 if (length(x - curr_p) < min_dist) {
12 // pw-const hash uses a different index (2%i)
for every if statement in the loop

13 if (M_PW_CONST) region = hash(region, 2xi);
14 // Update color and min distance
15 color = curr_color;

16 min_dist = length(x - curr_p);

17 3}

18 }

19 return color, region; // color is the output of
the original program, region is the output of
our pw-constant transform

0|3

Listing 3. We support [Disc] if statements within for loops, each of which
is treated independently which allows us to optimize multiple decision
boundaries in the voronoi mosaic program.

use of Voronoi diagrams through random point placement, this
approach lacked optimization of point locations, resulting in tiles
that failed to align with edge features of the original image; Hausner
[2001] overcame this using a post-processing edge-avoidance step.

We represent the image using a Voronoi program (Listing 3) which
takes a set of 2D points and their colors as input and outputs the color
of the closest point. Figure 19 (top row) shows the resulting mosaic,
where tile edges align with image edges. We can also directly extend
our approach to mosaics with complicated boundaries warped with
Perlin noise, see Fig. 19 (bottom row).

Painterly rendering. Painterly rendering [Hertzmann 1998] repre-
sent images through a collection of brush strokes or other primitives.
Li et al. [2020] produce painterly rendering by optimizing simple
primitives (ellipses, polygons, and Bézier curves), but their approach
is difficult to extend to more complicated primitives. We handle all
the primitives they can (Fig. 20) as well as others that they cannot
(Fig. 12, two rightmost columns). See our program in Listing 4.

Cel shading. Our method also supports NPR-based shading pro-
grams like cel shading and estimates derivatives with camera loca-
tions and cel thresholds automatically. These can be used to match
target images provided by artists, which we demonstrate in Fig. 21.

5.2.3 Differentiable ray marching. Geometry reconstruction from
multi-view images commonly represents geometry as an implicit
function, typically a signed distance function (SDF), maps its zero-
level set to a volume via a blurring operation and then render images
through volumetric ray-marching [Yariv et al. 2021; Wang et al. 2021;
Miller et al. 2024]. The volumetric mapping is crucial since it con-
verts the discontinuous boundary derivative (for the surface) which
cannot be handled by standard auto-diff systems into a continuous
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Fig. 19. Mosaicing. We fit target images (rightmost) using two different mosaic programs: a Voronoi mosaic program List. 3 (top row) and a Perlin noise-warped
mosaic program (bottom row). Starting from random point locations and colors (leftmost), we optimize these parameters using an L loss to match the target.
The derivatives with respect to point locations arise solely from the boundary term, guiding the points to automatically align with the target’s edges over the

course of optimization (middle columns).

£

(a) Initial (b) Optimized ) (c) Target
Fig. 20. Painterly rendering with Bézier curves. Since our method computes
derivatives of arbitrary differentiable implicit boundaries automatically, it
supports optimizing Bézier curves (we use a quadratic Bézier’s here). Given
a target (c) and a random initialization (a), our method produces a painterly

rendering of the target (b) through gradient-based optimization.

p, opacity, prim_color = // params that define
primitive geometry, opacity and color
respectively

2| float3 final_c = 0.0;

;| float alpha_acc = 1.0;

4

5

[MaxIters(N_PRIMS)]

s|for (int i = @; i < N_PRIMS; i++) {
6 int t = primitive_typel[il];

7 float o = opacity[il;

8 float3 c = prim_color[il];

9 float impl_val = 0.0;

10 if (t == @) { // Ellipse primitive

11 impl_val = ellipse_implicit(x, p, i);

12 } else if (t == 1) { // Triangle primitive

13 impl_val = triangle_implicit(x, p, 1i);

14 } else if (t == 2) {

15 // Other primitives like beziers, polygons etc.
16 }

17 [Disc]

18 if (impl_val < 0.0) {

19 if (M_PW_CONST) region = hash(region, 2xi)

20 final_c += alpha_acc * o * c;

21 alpha_acc *= (1.0 - 0);

22 }

2| return final_c;

Listing 4. We can also write a differentiable rasterizer in our system that
supports a wide variety of primitives given just their implicit functions.
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area derivative (for the volume). Our method skips this volume
mapping and directly computes the boundary derivative.

Some previous works [Vicini et al. 2022; Bangaru et al. 2022]
also directly estimate the boundary derivatives by reparameterizing
the integrand’s domain and others blur the boundary only for the
derivative (not for the primal) [Wang et al. 2024]. All these methods
are specialized to SDFs and can support high-order light transport
effects. However, they all require specialized routines to compute
derivatives, while we do not.

We take a different approach and show that differentiating a
simple ray-marching loop with an arbitrary implicit function (not
necessarily an SDF) using our method can recover geometry well.
The program in Listing 5 steps along the ray and returns the color at
the first point inside the object. Even with this simple setup, we are
able to recover geometry well in challenging cases like Fig. 22. Here,
the implicit function is a trilinearly interpolated scalar-valued grid
that is not restricted to be an SDF. Since our method is not limited
to implicit functions of a specific form, it can be directly applied to
optimize other implicit geometries.

5.2.4  Differentiable 3D rasterization. In the differentiable rendering
literature, there exist several works focused on rasterization, e.g.
Laine et al. [2020] rasterize triangles and Kerbl et al. [2023] rasterize
3D Gaussians. These systems are highly performant and support a
large number of primitives. However, implementing these systems
requires significant effort, especially implementing routines for
derivative estimation, which is error-prone.

Instead, we can implement a general-purpose rasterizer in our sys-
tem. While it is highly performant too, its goal is not to outperform
the highly-engineered systems discussed above, but rather to mini-
mize user effort during implementation. Given a set of sorted and
projected primitives, we can directly differentiate the rasterization
loop below to compute their boundary derivatives (List. 4).

The code in Listing 4 has if-else statements to select between
primitive types that are not marked with the Disc tag, these do not
affect derivative computation. This rasterizer is the backbone of
several of our applications like painterly rendering (which supports
vector graphics primitives such as lines, Bezier curves, polygons,
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Fig. 21. Cel shading. Recovering cel thresholds from target images (e.g. provided by an artist) can reduce the manual effort in hand-tuning shader parameters.
In general, the shading discontinuities are not parameterized easily, so automatically sampling them is crucial. (Left) We differentiate with respect to cel
thresholds and light positions; our derivatives match finite differences (FD) closely. FD shows some artifacts due to the difficulty in tuning €. (Right) We
demonstrate that these derivatives can be used to recover the unknown cel thresholds of a shader given a target raster image.

Initial Ours Target

Fig. 22. Differentiable ray-marching of implicit surfaces. Our method au-
tomatically computes boundary derivatives of a ray-marching shader
(List. 5) with arbitrary differentiable implicit geometry (a non-SDF trilinearly-
interpolated grid in this example). The goal is to recover the high-genus
target geometry given multi-view images. Starting from a sphere and us-
ing Chang et al. [2024]’s optimizer, we recover the challenging target geom-
etry, without any specialized boundary sampling routines.

// ray origin, direction and step

org, dir, dt =

size
2|p = ... // params of implicit geometry and shading
3|color = ... // output color
4| [MaxIters (MAX_STEPS)] // ray marching loop

for (int i = @; i < MAX_STEPS; i++) {

6 // Current point on the ray

float3 pos = org + ixdtxdir;

8 // Discontinuous inside-outside test

9 float implicit_value = implicit_function(pos, p);
10 [Disc, SkipLoop]

11 if (implicit_value < 0.0) {

12 // SkipLoop treats all ifs in the loop as the
13 // same, they are all hashed with index @

14 if (M_PW_CONST) region = hash(region, 0);

15 color = shading(pos, p); // Shading computation
16 break;

17 3}

18}

1v|return color;

Listing 5. We can differentiate multiple if statements, each corresponding
to a different depth-plane in the ray-marching for loop, enabling geometry
optimization of arbitrary differentiable implicit geometry.

ellipses and circles) discussed in §5.2.2, and differentiable rasteriza-
tion of triangles and ellipsoids discussed below. In our applications,
we additionally combine it with a grid-based acceleration structure,
enabling it to scale to hundreds of thousands of primitives.

Initial Ours Target

Fig. 23. Differentiable triangle mesh rasterization. Given multi-view images
and known material and lighting, we optimize an initial sphere triangle
mesh to a bunny using differentiable triangle rasterization and Laplacian
preconditioning [Nicolet et al. 2021]. Unlike prior work which requires
specialized handling of visibility discontinuities, ours does not require any
special handling; it automatically samples the boundary and computes
derivatives.

Triangle meshes. In Fig. 23, we show that our simple differentiable
rasterizer can be used to optimize triangle meshes to fit the geometry
of an object from multi-view images. Our method can optimize tri-
angle meshes with hundreds of thousands of triangles without any
additional engineering effort to compute derivatives. We stress that
although our method is not as performant as nvdiffrast [Laine
et al. 2020] (nor is it as fully-featured), it is much simpler to im-
plement, making it ideal for quick prototyping and exploring non-
standard primitives for rasterization.

Ellipsoids. Next, we demonstrate our method’s flexibility by ras-
terizing 3D ellipsoids using the same rasterizer. We fit the ellip-
soids to binary-valued multi-view targets, this ensures all geometry-
related derivatives are purely from the boundary derivative. Fig. 24
shows an example of occupancy function fitting and Fig. 25 shows
an example of shadow art. In this setup, we splat 3D ellipsoids (ini-
tialized randomly) as 2D ellipses with constant opacity and fixed
color; we then alpha blend them to compute pixel colors. Differently
from Kerbl et al. [2023], we use ellipsoids instead of 3D Gaussians
and so there is no continuous opacity fall-off in screen space, it
discontinuously drops to zero at the boundaries of the 2D ellipses,
which ensures the geometry-related derivatives are only due to
discontinuities. Our method is able to fit the binary targets in both
of the examples with high accuracy.

5.25 Inverse swept surfaces. In Fig. 26, we solve the inverse of the
swept surface problem from Fig. 17. Given a swept surface and a
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A

Ours

Ours (Visualization) Target

Fig. 24. Differentiable ellipsoid rasterization. The goal is to learn 3D object
occupancy represented as constant opacity 3D ellipsoids, given multi-view
binary images. Starting from a set of randomly initialized ellipsoids, they
are splatted onto the screen as 2D ellipses and alpha blended to form the
pixel intensity. All ellipsoid derivatives excluding opacity (scaling, rotation
and translation) are purely discontinuous. Using our method, all parameters
can be optimized without any interior or continuous derivatives. To refine
the number of ellipsoids, we add and remove ellipsoids as needed, similar
to 3D Gaussian Splatting [Kerbl et al. 2023].

trajectory, we recover the shape of the brush that produced the
swept surface. We model the brush as a binary-valued grid (from
List. 1) initialized randomly and optimize for its parameters to match
the swept surface under an L loss. Our method is able to recover
the stroke parameters with a high degree of accuracy.

5.2.6 Discontinuous texture optimization. While popular differen-
tiable renderers [Jakob et al. 2022; Li et al. 2018; Zhang et al. 2020;
Laine et al. 2020] can all compute boundary derivatives with respect
to geometry discontinuities, they only support continuous textures,
even though textured objects in the real world are often piecewise
continuous. To demonstrate the ability of our differentiable ras-
terizer to support discontinuous textures, we optimize the albedo
texture of the earth in Figure 27, where the albedo is discontinuous
across the land and water boundary. For every point on the surface
of the earth, if the point is on the land, the albedo is retrieved from a
texture map as usual, or else if it is water, the albedo is a single water
color. The land and water boundary is represented using a bilinearly
interpolated thresholded grid. Compared to continuous textures,
discontinuous textures can provide unique guarantees (e.g., the wa-
ter color is constant) and enable semantic user editing (see Figure 27,
rightmost column).

5.3 Other properties and ablations

We discuss some properties of our algorithm and demonstrate its
sensitivity to hyperparameters next.
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0 3.3

(a) Shadow Images

(b) Initial (c) Ours
Fig. 25. Shadow art using differentiable ellipsoid rasterization. (a) Given 3
target images, (c) the goal is to construct a set of opaque or translucent
3D ellipsoids whose shadows cast by 3 orthogonal spotlights onto 3 walls
form each image, in the spirit of Mitra and Pauly [2009]. (b) To fit each
shadow image, a set of randomly initialized 3D ellipsoids are differentiably
rasterized to 2D ellipses from the position and direction of each spotlight,
using the same method as in Figure 24. The size of the ellipsoids in (b) are
scaled up by 5x for visualization.

Swept surface

Brush

Absolute error

Fig. 26. Inverse 2D Swept Surface. Given a target swept surface and the same
brush path as in Figure 17, we aim to optimize the brush shape (bottom row),
using a bilinearly interpolated thresholded grid as in Figure 15. Starting from
a randomly initialized grid, our method can fit the target image accurately
up to minor ambiguity due to overlap in the swept brush.

5.3.1  Our method is occlusion-aware. An interesting consequence
of our method’s detection of discontinuities in image-space is that
it automatically reasons about occlusion. In Fig. 28, we have a scene
with a large number of overlapping (and fully occluded) primitives.
Our piecewise-constant function f_pc produces an output similar to
the forward rendering (Fig. 28a) but with constant region identifiers
instead of constant colors; it automatically culls the occluded parts
of the boundary. Thus, segment snapping reliably detects only the
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Fig. 27. Discontinuous texture optimization. Given 6 multi-view images of the earth (2 shown in top row), with known geometry, uv-mapping, and lighting, we
fit a discontinuous texture so that the land color is spatially-varying while the water color is constant. The discontinuous texture is represented by a bilinearly
interpolated thresholded grid to determine land or water (indicator, bottom row), a texture for the land, and a single color for the water. We composite all into
a single texture image for visualization (third row). We also show the result of the piecewise constant transform from §4.2 with three colors: white, black,
and gray (second row). Starting from a randomly initialized grid and constant land and water colors (left), our method can accurately fit the texture and
water color, as well as learn the land and water boundary. We use our discontinuous texture representation to easily edit land and water-specific parts of the
scene (rightmost column): we can blur the land texture while maintaining the land and water boundary (top), change the color of the water (middle), or even

displacement map the geometry to lower the water level (bottom).
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Fig. 28. Image-space boundary sampling. Our method samples the boundary
in image-space, where occluded boundary are not visible and thus not
sampled. In contrast, Diff VG starts by sampling an object and then a point
on its boundary; in this scene, most boundary points are occluded, so this
results in sparse derivatives.

unoccluded parts resulting in a high-quality derivative Fig. 28b,c.
In contrast, specialized-routine-based boundary samplers [Li et al.
2020] sample an object and then a point on its boundary without tak-
ing occlusion into account, resulting in sparse derivatives Fig. 28d.

5.3.2  Hyperparameter ablations. To show the effect of our hyper-
parameters, we compare derivative error with finite differences
in Figure 29. It practically demonstrates that our method converges
to the reference derivative value with increasing sample count. We
globally set k = 14 for kernel density estimation and the number of
bisection iterations to 15, which we demonstrate are sufficient for
derivative estimation.

6 LIMITATIONS AND FUTURE WORK

Our method makes some assumptions on the input function, which
limits its applicability in some settings and may lead to incorrect
results in others. Handling these limitations is an interesting avenue
for future work. We detail them in the following paragraphs.

Higher dimensions. Our method snaps an initial set of line seg-
ments stratified over a regular grid onto discontinuities. It requires
evaluating fpc at least once at all these locations. The total number
of initial samples scales exponentially with the input dimension d
for a fixed number of samples per dimension, limiting our method’s
applicability to higher-dimensional settings.

Inaccurate discontinuity detection. Our method relies on bisection
search to detect discontinuities resulting in an exponential decrease
in the distance to the discontinuity with the number of steps. How-
ever, if the number of bisection steps is insufficient, a discontinuity
may be detected at a point that is not close enough to the disconti-
nuity, resulting in additional bias (in practice, we have not yet found
this to be an issue with 15 or more bisection steps).

Incorrect branch assignment. Branch assignment maps samples x
to the branch index i along the function evaluation path that mini-
mizes |g;(x)|. If there are multiple g;’s close to zero, this can result
in incorrect branch assignment. Although it is possible to construct
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Fig. 29. Hyperparameter ablations. We show the mean and standard deviation of the absolute error (compared against finite differences) of the derivative
of the shape from Figure 9 for our three hyperparameters: (a) the number of segment samples, (b) the number of bisection search iterations for segment
snapping, and (c) the number of neighbors k for kernel density estimation. Our method is consistent and converges to the reference derivative with more
samples (a); a small number of bisection iterations (10 — 15) is typically enough to locate the boundary; kernel density estimation is accurate for 10 < k < 20.

a failure case (e.g., introducing g;(x) = ¢ 1 into the program), we
have not found it to be a practical issue in our applications.

Sources of randomness. Applications that rely on random num-
bers seed them uniquely for each point in the domain. This seeding
process is discontinuous, breaking the assumption that all discon-
tinuities are expressed as [Disc] if conditions, which limits our
applicability to these settings. Developing program transformations
that can handle these scenarios will unlock several new applications
and is an exciting avenue for future work.

Limitations of implementation. Our compiler produces piecewise-
constant transformation. To enable this transformation, all loops
must have static upper bounds on iterations (as is required by
SLANG.D), no mutable state or side effects to global memory, and
no calls to dynamically dispatched functions, as these prevent the
compiler from statically determining the total number of branch
operators and otherwise make the transformation infeasible. Fu-
ture implementations could potentially compute the transformation
dynamically at runtime to avoid these limitations.

Uniform boundary sampling. Since we assume the boundary func-
tions g; to be continuous, we can cast boundary sampling as a
(zero) level-set sampling problem. We do so by segment snapping
(§4.3) followed by kernel density estimation (§4.5) to account for
non-uniformities. Recent works [Ling et al. 2025; Chiu 2022] have
explored efficient methods to uniformly sample level-sets through
ray-casting and Markov Chain Monte Carlo. Replacing segment
snapping with them would obviate the need for kernel density esti-
mation and may be an interesting avenue for future work.

7 CONCLUSION

We present the first boundary sampling algorithm that can handle
decision boundaries that are not parameterized by the user. Our
method works automatically and requires almost zero user guidance,
on a standard shader programming language [He et al. 2018; Bangaru
et al. 2023]. We show many applications that were not possible
before, due to the lack of a good derivative computation method. We
believe our work is a significant step towards general differentiation
methods for arbitrary user-defined functions and shaders.
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A KERNEL DENSITY ESTIMATION ON MANIFOLDS

Please see Berry and Sauer [2017] (Section 3 in their paper) for a
detailed treatment of kernel density estimation on manifolds; we
restate the relevant results here for convenience. Our kernel density
estimator (Eq. (7)) computes the density of points on a manifold 9Q
of codimension 1. Since it uses Euclidean distances in ambient space
Q and not geodesic distances (which account for curvature of the
manifold) in 9Q as the metric, it results in bias due to the curvature
of the manifold. Nonetheless, the overall estimator, like standard
KDE, is consistent. Intuitively, as Berry and Sauer [2017] explain,

ACM Trans. Graph., Vol. 44, No. 6, Article 209. Publication date: December 2025.


https://doi.org/10.1145/97879.97902
https://doi.org/10.1145/383259.383327
https://doi.org/10.1145/383259.383327
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://arxiv.org/abs/2506.05268
https://arxiv.org/abs/2506.05268
https://arxiv.org/abs/2506.05268
https://doi.org/10.1016/0047-259X(79)90065-4
https://doi.org/10.1016/0047-259X(79)90065-4
https://doi.org/10.1145/3478513.3480501

209:18 « Yash Belhe, Ishit Mehta, Wesley Chang, lliyan Georgiev, Michaél Gharbi, Ravi Ramamoorthi, and Tzu-Mao Li

1|g_i = ... // some function of x and theta
[Disc]

|if (g_i > 0.0) {

4 // true branch
51} else {
6 // ... false branch

}

Listing 6. We start with an input program that contains explicitly tagged
[Disc] (discontinuous) if-else statements.

this is because as the bandwidth of the kernel shrinks, the kernel is
localized to a very small region within which the Euclidian distance
is approximately equal to the geodesic distance.

B SYSTEM IMPLEMENTATION
B.1 Discontinuous program requirements

The program can contain two types of operations. The first type
consists of differentiable operations, which include any function
supported by SLANG.D’s automatic differentiation system, such as
arithmetic operations, trigonometric functions and operations with
manually specified derivatives. The second type is discontinuous
if-else statements, which are preceeded with a [Disc] tag, a
language extension we introduce to mark discontinuities; we detail
it in the next subsection.

The program’s control flow can include (nested) for-loops and
each iteration can contain different discontinuities. Function calls
are also supported, allowing composition of simpler discontinu-
ous functions into more complex ones. However, recursion is not
supported as it can violate the DAG requirement.

Common non-differentiable operations like min and max must be
expressed through explicitly tagged if-else statements. . Non-tagged
if-conditions are also supported, but their derivatives will not be
computed . The presence of non-tagged if-conditions removes all
correctness guarantees for the derivative (even of parameters associ-
ated with tagged if-else statements) and requires careful reasoning;
we show an example in List. 4.

B.2 Program transformations

The transformation process converts the input discontinuous pro-
gram into a form that can compute boundary derivatives. We tra-
verse the program’s DAG in topological order and assign a unique
index i to each branch statement. The input program contains dis-
continuous branches that evaluate a boundary function g;(x, 6)
to determine which branch to take (Listing 6). In our system, we
implement all function transformations within the same program
and switch between them using boolean flags. These include the
piecewise constant transformation §4.2 when M_PW_CONST is set,
the branch index detection §4.4 when M_BRANCH_IDX is set, the two-
sided evaluation transform §4.6 when M_TWOSIDED is set, and the
original program when all flags are false as shown next.

Piecewise-Constant (M_PW_CONST). This mode implements the
piecewise-constant transformation from §4.2. It updates a region
identifier (region_id) for each branch encountered during program
execution — this has the same effect as updating the ternary state s
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// some function of x and theta

M| /] ===== branch index detection -----

+|// map the image-space boundary sample x to the
branch condition whose boundary it lies on
s|1// if the boundary fn has the lowest |g_i| of all
6|// branches thus far, update g_min, idx_min

7[if (M_BRANCH_IDX && abs(g_i) < abs(g_min) {

8 g_min = g_i; // update min boundary fn value

9 idx_min = i; // update branch idx

10|}

11

Y| /] ===== two-sided eval or original function -----

13(// When M_TWOSIDED is true and this branch (i) is
the one closest to the boundary (i == idx_min):

wu|// - Choose which side to evaluate based on

EVAL_TRUE_SIDE flag
15(// Otherwise:

w6 (/7 - Use the original branch condition (g_i)

17|if ((M_TWOSIDED && idx_min == i) ? EVAL_TRUE_SIDE
g_.i > 0.0) {

18 Jf ===== piecewise constant evaluation -----

19 if (M_PW_CONST) region_id = hash(region_id, 2%i);

0 // original program true branch
1|} else {
22 Jf ===== piecewise constant evaluation -----

23 if (M_PW_CONST)region_id = hash(region_id,2%xi+1);
24 // original program false branch

Listing 7. Transforming a discontinuous branch statement

which tracks the branching sequence taken by the program. Like
s, region_id is initialized to the same value for all points. During
evaluation, the region identifier is updated using a hash function
that combines its current value with a unique value for the branch
and the side taken: 2i if the condition is true and 2i + 1 if it is false,
see L19 and L23 in List. 7.

Any two inputs x1, x, that take the same path through the branches
will end up with the same identifier, while points that take different
paths will end up with different identifiers (with negligible collision
probability due to the 32-bit hash space). We opt for the hash-based
approach as it is simple to implement and also allows for custom
user-defined piecewise constant transformations §5.2.3.

Branch Index Detection (M_BRANCH_IDX). During derivative com-
putation, segment snapping §4.3 uses the piecewise-constant mode
above to draw samples on the boundary. In this mode, we assign
these samples x to the branch i whose boundary they lie on. We
do this, by invoking List. 7 with M_BRANCH_IDX set and g_min=oo.
Now as we evaluate the program, we update g_min and idx_min, to
keep track of the index i that achieves the minimum absolute value
|gi (x, 0)| for each branch we encounter, see L7-L10 in List. 7. We
return both the index idx_min which is used for two-sided evalua-
tion and probability density estimation, and the boundary function
value g_min for boundary velocity estimation.

Two-Sided Evaluation (M_TWOSIDED). We use idx_min for the two-
sided evaluation f(x*) — f(x7). For each boundary sample x, we
also need to evaluate the integrand value on either side of the bound-
ary. To do this, we first perform the branch index detection above,
and then invoke List. 7 with M_TWOSIDED set and this time we also



Fig. 30. Timing comparison. For the scene in Fig. 12, we compare the deriv-
ative computation time of our method with finite differences for a different
number of circles. Finite differences scales as O(n), ours as O(1), see di-
cussion in Appendix B.3.
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set idx_min to the index we retrieved from the branch index de-
tection. Now, during execution, when we encounter the branch for
which idx_min == i, we forcefully evaluate either the true or false
branch using the EVAL_TRUE_SIDE flag, see L15-L16 in List. 7. This
allows for precise, side-specific evaluation at the boundary, without
relying on arbitrary epsilon offsets as used in previous works [Li
et al. 2018, 2020].

B.3 Timing comparison with finite differences

Our method computes derivatives using reverse-mode autodiff
which scales as O(1) with the number of parameters being differen-
tiated, which is more efficient than forward-mode autodiff (finite
differences) which scales as O(n), we show an example in Fig. 30.
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