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Fig. 1. Our proposed method allows fine-grained material selection in images on two different levels of granularity, significantly outperforming previous work

(Materialistic [Sharma et al. 2023]) in selection accuracy and consistency. We show here results on challenging examples due to specular reflections (top left)
and fine patterns outside the training data (top right, bottom left). Selection masks are shown as green image overlays. The bottom right row shows material
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editing results using our predicted two-level selection masks, with the masks shown as insets.

Selection is the first step in many image editing processes, enabling faster
and simpler modifications of all pixels sharing a common modality. In this
work, we present a method for material selection in images, robust to lighting

and reflectance variations, which can be used for downstream editing tasks.

We rely on vision transformer (ViT) models and leverage their features for
selection, proposing a multi-resolution processing strategy that yields finer
and more stable selection results than prior methods. Furthermore, we enable
selection at two levels: texture and subtexture, leveraging a new two-level
material selection (DuMaS) dataset which includes dense annotations for
over 800,000 synthetic images, both on the texture and subtexture levels.
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1 INTRODUCTION

Selection in images is an ubiquitous operation, enabling numerous
downstream editing tasks. Given an image and a user input, such
as a clicked pixel, selection aims to identify other pixels in the
image that share a particular property with the user input. Various
modalities of selection exist, for example by color [Belongie et al.
1998], object [Ravi et al. 2024], or material [Sharma et al. 2023].
The latter, in particular, facilitates selecting parts of an object or
multiple objects easily, allowing further editing of regions that share
the same material. Understanding which materials are the same in
images also provides key information for inverse rendering and
scene understanding tasks [Nimier-David et al. 2021].

Recent work [Sharma et al. 2023] has proposed to extract features
from a pre-trained vision transformer (ViT) [Caron et al. 2021] and
spatially process them for selection. However, the ViT’s tokeniza-
tion patch size and small operating resolution limit the selection
precision, especially around edges and thin structures. Moreover,
to fine-tune the ViT for material selection, Sharma et al. used a
synthetic dataset which defined materials as textured surfaces (e.g.,
a wallpaper with a repeating pattern texture); this does not allow
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selecting image elements sharing similar subtexture properties (e.g.,
a part of the repeating pattern with a similar appearance).

In this work, we tackle these limitations and propose a model for
more precise and robust selection, capable of selecting at both tex-
ture and individual subtexture levels. To extract more discriminative
features for material selection we leverage DINOv2 [Oquab et al.
2024]. Its refined architecture and use of larger patch sizes to extract
better contextual information outperforms other existing models
like DINOv1 [Caron et al. 2021] or Hiera [Ryali et al. 2023]. Unfor-
tunately, the ViT’s native resolution (518x518 for DINOv2) typically
requires downscaling the input images before extracting features.
This translates into poor performance when selecting boundaries or
areas with fine details. To mitigate this, we devise a multi-resolution
approach, splitting the original input image into tiles, and process-
ing both a downscaled version of the original image and the tiles at
the native ViT resolution, before concatenating them. This allows
our aggregated features to capture both the high-level context pro-
vided by the downscaled image and finer-grained details from the
better-resolved individual tiles, significantly enhancing selection
quality.

We also enhance the training process by sampling multiple pixels
from various materials in each training image, instead of a sin-
gle pixel, improving both training stability and material selection
consistency. Finally, we have designed a new synthetic dual-level
material selection (DuMaS) dataset which comprises 800,000+ im-
ages of indoor and outdoor scenes. It is over 16X larger than the
recent Materialistic dataset [Sharma et al. 2023] and includes anno-
tations at two selection levels: texture and subtexture. The texture
level is the same as in the Materialistic dataset and targets the selec-
tion of surfaces which belong to the same texture — e.g., on a chess
board, black and white squares would be selected together. Our new
subtexture level adds a finer-grained option to enable the selection
of parts of textures with similar appearance, grouping together indi-
vidual texture components - in the chess board example, black and
white squares would be selected separately (see also Fig. 1). This
two-level approach also improves selection quality and consistency.

We evaluate the quality and consistency of our model both quali-
tatively and quantitatively, under different scenarios: varying the
selected pixel, the image’s field of view, or its lighting. We ablate
our multi-resolution processing and training schemes as well as the
impact of our dataset on selection accuracy. Finally, we compare
our method to two state-of-the-art methods, namely Materialis-
tic [Sharma et al. 2023] and the Segment Anything Model 2 (SAM2)
fine-tuned for materials [Fischer et al. 2024; Ravi et al. 2024], show-
ing significant improvement over both.

In summary, we propose a material selection model with im-
proved accuracy and support for both texture- and subtexture-level
selection in images thanks to the following contributions:

e A material selection architecture that offers two-level control
of the selection granularity;

e An improved training scheme for multi-pixel sampling and
multi-resolution processing;

o A large synthetic dataset comprising annotations on both
texture and subtexture levels.
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We will release our model and test code, as well as a significant
subset of our dataset!.

2 RELATED WORK

Object segmentation and selection. Recent research in object seg-
mentation and selection has significantly advanced both 2D and
3D image understanding. In 2D images and videos, models such as
SAM and SAM2 [Kirillov et al. 2023; Ravi et al. 2024] enable selec-
tion/segmentation (and tracking) of objects. In 3D representations,
methods for radiance fields [Bhalgat et al. 2023; Fu et al. 2022; Kim
et al. 2024], point clouds [Tchapmi et al. 2017] and inter-surface
mappings [Morreale et al. 2024] leverage geometric or multi-view
cues to achieve segmentation and selection in a consistent manner.

These techniques, however, operate on an object level, targeting
the selection of distinct objects in an image. In contrast, we target
fine-grained material selection, where our goal is to identify regions
sharing the clicked pixel’s material, irrespective of the object(s) onto
which the material is applied: a single object can contain multiple
materials and a single material can appear on multiple objects.

Material segmentation and selection. Material selection from 2D
images is a non-trivial problem, since a surface’s perceived appear-
ance can be influenced by numerous factors beyond its reflectance
properties, such as its geometry [Boyaci et al. 2003], illumination
[Fleming et al. 2003], or the surrounding surfaces and object identity
[Sharan 2009; Sharan et al. 2014]. Early material selection algorithms
were built around low-level features such as color- and texture de-
scriptors [Belongie et al. 1998; Haralick et al. 1973] or hand-crafted
filters and heuristics [Leung and Malik 2001; Malpica et al. 2003]. Ad-
ditionally, selection is simplified when the image can be decomposed
into (potentially disjoint) regions of varying reflectance properties,
as shown by Lensch et al. [2003] or, more recently for radiance
fields, by Verbin et al. [2022]. However, this often requires addi-
tional information such as multi-view images or specialized capture
hardware [Xue et al. 2020], and single-image decomposition into
physical components remains challenging [Kocsis et al. 2024; Zeng
et al. 2024; Zhu et al. 2022].

Leveraging deep networks’ strong classification capabilities, meth-
ods targeted material semantic classification [Bell et al. 2015; Cimpoi
et al. 2014; Sumon et al. 2022]. Others proposed to train material per-
ceptual similarity metrics for classification of complete photographs
containing materials [Lagunas et al. 2019; Sharan et al. 2013].

Closest to our method is Materialistic [Sharma et al. 2023], a mate-
rial selection method leveraging large vision models’ features [Caron
et al. 2021]. While we also target material selection, we differ from
this work in multiple ways: we improve feature processing through
a multi-resolution approach, preserving more signal throughout the
pipeline and hence improving selection accuracy and consistency.
Further, we extend their proposed definition of pixels with similar
materials (i.e., pixels belonging to the same texture) by adding a
finer-grained selection level we call subtexture. This enables the
selection of texture sub-elements which share the same appearance.
Additionally, despite the existence of several datasets [Bell et al. 2013;
Deschaintre et al. 2018; Eppel et al. 2024; Murmann et al. 2019a; Sha-
ran et al. 2014; Upchurch and Niu 2022; Vecchio and Deschaintre

!Project website: https://graphics.unizar.es/projects/MatSelection/
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2024; Wang et al. 2016] for semantic material classification or mate-
rial selection, they typically provide coarse semantic annotations.
For material selection, Sharma et al. [2023] used 50,000 synthetic
renderings with ground-truth annotations. However, their dataset
contains few, strongly textured materials with only texture-level
annotations. In contrast, we design a significantly larger (800,000+
images) synthetic dataset containing many spatially varying tex-
tures with annotations both at the texture and subtexture levels.

Image encoders. Most modern object and material selection meth-
ods utilize the features of big vision models, ViTs or masked auto-
encoders (MAEs) pre-trained on large collections of natural images,
as backbones. ViTs like DINO and DINOv2 [Caron et al. 2021; Oquab
et al. 2024] learn priors encoded in these images (e.g., the appearance
of shadows and reflections), making them well-suited for generaliza-
tion to vision tasks such as object or material selection. A defining
feature of both ViTs and MAEs is the use of self-attention [Vaswani
2017], enabling global information sharing across the image.

However, attention is a memory-intensive operation, limiting
both architectures in terms of input patch size and resolution. The
recently introduced Hiera architecture [Bolya et al. 2023; Ryali et al.
2023] mitigates this via hierarchical feature extraction and smaller
kernels, leading to sharper feature boundaries. Scaling-on-scales (S?,
[Shi et al. 2024]), proposes to upscale the input to different resolu-
tions and concatenate the resulting features, obtaining comparable
(and occasionally superior) performance to larger vision models.

In this work, we also leverage the features of big vision models,
evaluate various options [Caron et al. 2021; Oquab et al. 2024; Ryali
et al. 2023] and adjust the scaling proposed by S? to fit our selection
context, significantly improving selection quality and consistency
by preserving more of the input image’s available information.

3 METHOD

We design a new state-of-the-art model for material selection in
images that addresses the precision and robustness limitations of
prior approaches, and build a large synthetic dataset with material
annotations at both texture and subtexture levels.

Our model takes as input an image and a query pixel, and out-
puts per-pixel material similarity to this query at both texture and
subtexture levels, as demonstrated in Fig. 1. This similarity can then
be thresholded into a binary selection mask. We build our model
on the architecture of Materialistic [Sharma et al. 2023], to which
we make three key modifications, described in detail in Section 3.1:
(1) multi-resolution processing and feature aggregation to improve
precision, (2) two-level representation to allow for texture- and
subtexture-level selection, and (3) multiple query sampling during
training to improve robustness.

An overview of our pipeline is shown in Fig. 2. We first extract
features from the input image with a ViT encoder at different res-
olutions. Our model can be used with different encoders, and we
evaluate alternatives in Section 4; for convenience, unless explicitly
stated, our explanations and results in the rest of the paper use
DINOV2. The extracted features are then processed through our pro-
posed multi-resolution aggregation scheme, and fed into a material
selection head akin to that of Materialistic, modified for two-level
selection. This head takes the aggregated features, and computes the
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cross-similarity between the features and the image patch centered
around the user-provided query pixel, yielding query-conditioned
features. Both in Materialistic and in our work, the feature extraction
by the encoder - and therefore the subsequent processing — is done
from four different transformer blocks. After the cross-similarity
feature weighting layer, the query-conditioned features at different
blocks are combined and bilinearly upsampled via convolutional
layers. Finally, a channel-wise sigmoid is applied to yield the fi-
nal per-pixel similarity. The model is trained minimizing a binary
cross-entropy (BCE) loss on our DuMasS dataset (Section 3.2).

3.1 Two-Level Multi-Resolution Material Selection

We now describe here the three key components that enable our
model to perform fine-grained, spatially varying material selection
(§3.1.2 to §3.1.4). Prior to that (§3.1.1), we discuss our feature extrac-
tor of choice and its advantages over previous alternatives.

3.1.1 Image encoder. Different encoders can be used to extract fea-
tures from the input image. In this work, we rely on DINOv2 [Oquab
et al. 2024], a pre-trained self-supervised ViT that builds upon the
foundation of DINO [Caron et al. 2021], incorporating improve-
ments in architecture and training strategies. In particular, it utilizes
a larger and more diverse dataset, better augmentations, and a more
refined distillation process to enhance feature extraction capabilities
with richer representations. DINOv2 also adopts a larger patch size
(ps = 14, almost twice as large as DINO), which captures higher
contextual information but results in lower-resolution tensors at !/14
of the input image resolution. In our experiments, using DINOv2
as an encoder yields more discriminative features, particularly for
disentangling appearance from lighting variations, and more confi-
dent selection predictions compared to using the original DINO. Its
bigger patch size slightly degrades performance on edges and small
details on cluttered scenes when using a single resolution approach.
However, this is mitigated by our multi-resolution approach, where
a bigger patch size does not hamper performance. In the following,
we refer to DINOv2 as the pre-trained embeddings from variant
ViT-B/14 with ps = 14 and feature dimension d = 768, our best
performing configuration. Following previous work [Sharma et al.
2023], we extract four intermediate features (both local and global
tokens) from transformer blocks at indices 2, 5, 8, and 11.

3.1.2  Multi-resolution processing and feature aggregation. Despite
the impressive performance of ViTs as feature extractors, their tok-
enization significantly reduces the resolution of the input images,
degrading precision on edges and thin structures. Therefore, we pro-
pose to extract features from regions of the input image at multiple
resolutions, improving the sharpness and robustness of our material
selection results. Given an input image I, we construct a pyramid
of n resolutions {I, I}, where I; represents the image at the input
resolution r X r of the image encoder (r = 518 for DINOv2), and
I; represents 2!~ 1 higher-resolution versions, ensuring that their
resolution remains divisible by the ViT patch size ps (to maintain
alignment between the feature maps across resolutions). Each I
is split into 2! non-overlapping tiles, each of them with the reso-
lution of I1, r X r. In practice, our 1024 X 1024 training images are
downsampled to the image encoder’s native resolution for I;, while
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Fig. 2. Model architecture. Our model extracts ViT features at different resolutions, for the full image and for each separate tile, leading to a multi-resolution
feature encoding. The subsequent spatial processing layers upscale the features before the cross-similarity computes the attention with respect to the clicked
image pixel and patch. We exploit the information encoded at different depths by repeating this process across four ViT levels, before fusing the output with a
residual CNN and feeding it to our two-level selection head, producing selections at both subtexture and texture level. The ViT is frozen, the red blocks are

trained. FC is short for fully-connected network.
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Fig. 3. Fine-grained material selection. Our multi-resolution aggregation
allows to recover thin structures, overcoming a limitation acknowledged in
previous work [Sharma et al. 2023].

I, makes use of the full image resolution, slightly resized and split
into four tiles. These tiles are fed into the image encoder, which, as
explained in §3.1.1, extracts features at four different scales (from
four transformer blocks, j = 1, ..., 4). This yields feature maps Fjj,
extracted at image resolution i and block j. In our experiments, we
evaluated two and three resolution levels and found that three levels
did not provide tangible benefits given our training data resolution,
while requiring significantly more compute for the additional tiles’
features. We therefore use two levels n = 2, effectively achieving
twice higher resolution than the single resolution approach.

We then introduce a feature aggregation module to integrate
information across resolutions (see Fig. 2). We first resample all
feature maps F;; to match the target resolution (with different target
resolutions for each block j) and concatenate the features along
the channel dimension, making sure to preserve the original image
layout when re-arranging the tiles:

Fagg,j = Concat({Resample(F;;)},), 1)

where Resample(-) denotes bilinear upsampling and area down-
sampling to match the target resolution, and Concat(-) represents
concatenation along the channel axis.
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Previous related work on multi-resolution aggregation [Shi et al.
2024] always downsamples the higher-resolution features before
concatenating them. In contrast, we adapt our up- or down- sam-
pling strategy to the various target feature resolutions per block,
where we make sure to preserve the highest-resolution spatial de-
tails (see supplemental document for resampling details). For aggre-
gation, concatenation outperforms averaging as it preserves more
information by retaining both fine-grained and broader contextual
features that are later processed by the material selection head. We
illustrate the benefits of this module in Fig. 3, where our multi-
resolution processing allows to sharply select the thin structures of
the feather.

3.1.3  Two-level representation. Our model outputs material similar-
ity representations at two levels, texture-level and subtexture-level,
in the form of two different similarity maps. To achieve this, we
modify the output per-pixel similarity score of our model to have
two output channels, each of them using a sigmoid activation func-
tion. We train both channels jointly, minimizing the BCE loss on
our DUMAS dataset.

3.1.4  Multi-query sampling during training. To improve training
stability and robustness, we sample multiple query pixels per im-
age during training, covering diverse materials, which has proven
helpful in the object selection context in previous work [Ravi et al.
2024]. This strategy is similar in spirit to using a higher effective
batch size, re-using the image encoder computation and making
the optimization more stable. We show in Section 4 and the sup-
plemental document how the multiple query sampling benefits the
robustness and accuracy of our material selection results.

3.2 DUMAS training dataset

Most existing material datasets with dense image-space annotations
[Bell et al. 2013; Murmann et al. 2019a; Upchurch and Niu 2022]
contain semantic annotations of material classes, such as “wood” or
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Fig. 4. DUMAS training dataset creation. Starting from twelve base noise patterns from Substance Designer, we vary their parameters to create 1,571 binary

masks which we use to randomly combine 3,026 stationary reflectance maps to generate 10,881 materials (see text for more details). We assign these material
maps to objects of our 132 scenes under different combinations, and render videos by varying camera viewpoints, resulting in 816,415 individual images. For
each image, our dataset includes dense annotations at both subtexture and texture level; annotation IDs are mapped to gray levels for visualization.

“metal”, but lack fine-grained annotations of variations within a class.
The dataset of Materialistic [Sharma et al. 2023] does contain fine-
grained per-pixel material annotations for 50,000 synthetic images;
however, such annotations do not distinguish between different
individual texture components within a single texture (e.g., black and
white squares on a checkered pattern). Such distinction is necessary
to enable our two-level material selection. Therefore, we render a
new large-scale synthetic dataset of over 800,000 images including
fine-grained material annotations at both texture- and subtexture-
level, named DuMAS (Dual-level Material Selection) dataset.

We do so by rendering 132 different synthetic scenes (119 indoor,
13 outdoor) from the Evermotion collection [eve 2024] with ran-
dom materials alongside texture and subtexture annotations. We
first create the material maps which will be applied to objects in
different scenes. We select a set of 3,026 stationary2 source mate-
rials from the Adobe 3D Assets library, constituting our initial set
of reflectance maps. We then create 1,571 different binary masks
by randomly sampling generative parameters from twelve noise
patterns in Substance Designer. Combining a binary mask (used
as alpha channel) with a pair of reflectance maps leads to a new
texture map (see Fig. 4, left). In particular, for each binary mask we
sample five pairs of reflectance maps without repetition, for a total
of 7,855 different texture maps. Together, the reflectance and texture
maps yield 10,881 unique material maps. Each reflectance and each
texture map are assigned a unique ID, which is then used for image
annotation at texture and subtexture levels.

For each scene, we create five different material assignments by
randomly sampling from our set of material maps, for a total of 660
different scene configurations. We maintain the original relation-
ships between objects, so that objects (or parts of them) with the
same material in the original scene will also share the same material
after our assignment. Transparent and emissive materials in the
original scenes are left unmodified. The final annotations, in the
form of per-pixel material IDs at two levels, subtexture and texture,
are as follows: if an object is assigned a material from the initial
reflectance set, both levels will share the same ID. If it is assigned
a material from the texture set, the texture-level annotation will

2A class of materials consisting of plain colors, or structures that (randomly) repeat
over the surface [Aittala et al. 2015].

store its ID, and the subtexture level will store the ID of its assigned
constituent reflectance map (see Fig. 4, right).

We render videos of up to one minute for every scene, following
a camera trajectory that mimics a first-person exploration of the
scene, at 30 fps. Each frame is rendered at 1024x1024 resolution
with 256 samples per pixel using Blender Cycles 4.2. Our full DuMa$
dataset contains 816,415 frames (around 250 days of GPU rendering
time). Including videos instead of independent images allows us to
use our dataset to fine-tune video selection models like SAM2.

3.3 Implementation Details

We train our model on our DUMAS dataset for 10 epochs, using the
Adam optimizer with learning rate 1e-4 on four A100-40GB GPUs,
using the DDPS distributed strategy and batch size 4 images per GPU.
During training, we sample random crops at ViT resolution and
apply random exposure, saturation, and brightness augmentations.
For our multi-query sampling, we uniformly sample 10 pixels within
the crop. See the supplemental document for implementation details.

4 RESULTS

In this section we present qualitative and quantitative evaluations, as
well as a robustness analysis of our model with respect to user inputs,
zoom levels, illumination, and sensitivity to the selection threshold.
Finally, we ablate several aspects of our architecture and show
application examples for material editing at texture and subtexture
levels. We will publicly release our evaluation framework’s code
and create a benchmark for both material selection quality and
robustness, to facilitate future work.

4.1 Real-World Test Datasets

We evaluate our method mainly on two test datasets that con-
tain in-the-wild, real-world images: (i) the MATERIALISTIC TEST
dataset [Sharma et al. 2023], containing 50 images annotated at
texture level; and (ii) the Two-LEVEL TEST dataset, our new, man-
ually annotated test set containing 20 images with annotations at
both subtexture and texture levels. This new dataset contains chal-
lenging real-life scenarios with strong lighting variations, indoor
and outdoor instances, cluttered scenes with thin structures, and

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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Fig. 5. Qualitative results. We show results of our method (two-level selection) for images in our real-world test datasets. For each example and level, we
show the predicted, binarized selection masks as green image overlays and the similarity score before thresholding in false color (blue low, red high). Our
method works well at both subtexture and texture levels even for cluttered scenes and patterns very different from the ones in the training set (third row,
wallpaper), and with challenging examples where objects in the scene share the same color (bottom row). In non-spatially varying materials (bottom row) our

model’s predictions for both levels are consistently the same.

high-frequency appearances. We show this new test set in the sup-
plemental document and will release it upon publication. In both
datasets, we sample 10 query pixels per image for evaluation, gen-
erating 500 test cases for the MATERIALISTIC TEST dataset, and 200
test cases for our Two-LEVEL TEST dataset.

4.2 Evaluation

Qualitative results. Figure 5 presents the results of our two-level
selection method in challenging scenarios. These images contain
a diverse range of cases, demonstrating the robustness of our ap-
proach. Our method accurately selects textured areas and discrim-
inates subtextures, as shown in rows one to three. The third row
shows a highly cluttered scene, with several spatially-varying mate-
rials, in which our method successfully makes the right selection at
both levels, despite the pattern being very different from the train-
ing ones. The last row showcases a challenging, mostly-white scene
with varying reflectances, where our method correctly identifies
the table material at both texture and subtexture levels. We show
additional results in the supplemental document.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.

Comparisons. We compare our model with two recent state-of-
the-art methods: Materialistic [Sharma et al. 2023], and SAM2 [Ravi
et al. 2024]. Since SAM2 was originally trained for object selection,
we fine-tune it with our DUMAS dataset to the material selection
task (see supplemental document for details on the fine-tuning). For
completeness, we also report results of Materialistic trained on our
DuMAS dataset, as well as using DINOv2 as encoder. For the SAM2
model evaluations we duplicate the first frame and use the output of
the second frame [Fischer et al. 2024], which significantly improves
its overall confidence and accuracy. We also include results without
this frame duplication in the supplemental document.

Figure 6 presents qualitative results for texture-level selection on
real images, from a single query pixel, comparing our method with
Materialistic and SAM2 fine-tuned with our DUMAS dataset. Overall,
our method is more accurate and results in fewer false positives.
Compared to Materialistic, it consistently produces sharper and
cleaner predictions across all examples; this is probably due partly to
our DUMAS dataset, but also to Materialistic’s reliance on features at
a single resolution, which constrains the precision of the output, and
results in blurry edges and a diminished capacity to accurately select
fine details. In contrast, the fine-tuned SAM2 model, using the Hiera
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SAM?2 + DuMaS$ Ours

Fig. 6. Qualitative comparison. Texture-level selection results for Materialistic, SAM2 fine-tuned on our DUMAS dataset, and our method. The white squares
highlight areas where the methods struggle. Materialistic fails to select relevant areas, especially in the presence of small or thin structures (first and last rows),
or to produce sharp, clear selections (second and third rows). SAM2 has improved sharpness, but produces many false positives in areas of similar appearance.

encoder (with a smaller patch size and twice the input resolution),
produces sharp edges and handles thin structures, but tends to over-
select areas of the image of relatively similar appearance. We also
show additional comparisons in the supplemental document.
Table 1 reports quantitative results for three different metrics
on both test datasets. The L1 metric measures the pixel-wise dif-
ference between the predicted values and the ground truth mask;
lower values indicate better agreement, which can be interpreted
as higher prediction confidence. The Intersection over Union (IoU)
measures the overlap between the ground truth mask and the pre-
dicted mask, and the F1 score is the harmonic mean of precision
and recall, providing a single metric that balances both aspects of
a model’s accuracy. IoU and F1 are computed by binarizing the
outputs with a threshold, which we fix to 0.5. Metrics for tasks
outside a method’s original training scope are shown in the table
for reference, but marked in gray (e.g., our subtexture level is not
supported by previous works). Table 1 supports our qualitative com-
parisons; when trained on DuUMAS, Materialistic slightly improves
its performance, due to the larger and more diverse dataset. Still,
our method consistently achieves the best performance for both
subtexture and texture level selection. Interestingly, when changing
the image encoder of Materialistic to DINOv2 (second row), the over-
all quantitative performance of Materialistic is slightly degraded:
despite the stronger feature representation capabilities of DINOv2,

Table 1. Mean results of various methods (rows) across different metrics
(subcolumns) on two real-world test datasets (columns) . For single-level
methods trained on our DUMAS dataset (+DUMAS), we train two separate
models (one per level) and report the result of the relevant one per column.
Gray text indicates cases where the model is evaluated on a different task
to the one it is trained for, and boldface marks the best results.

Two-LEVEL TEsT
Subtexture Level Texture Level

MATERIALISTIC TEST
Texture Level

L1| ToUTF17 L1| TIoUTF17 L1| IoUTF17
Materialistic 0.057 0.858 0.906 0.144 0513 0.629 0.112 0.657 0.749

Materialistic + DINOv2 ~ 0.069 0.838 0.890  0.202 0.463 0.581 0.135 0.636 0.728
Materialistic + DuMaS ~ 0.043 0.858 0.904  0.092 0.615 0.717 0.101 0.680 0.765

SAM2 *obj.sel. 0.086 0.633 0.708 0.121 0.426 0.539 0.118 0.558 0.632
SAM2 + DuMa$ 0.060 0.784 0.847  0.103 0.576 0.681 0.071 0.730 0.799
Ours 0.030 0.896 0.935 0.071 0.673 0.766 0.069 0.750 0.823

its larger patch size (14 vs. 8) yields lower resolution features, signifi-
cantly impacting performance on edges. This highlights the benefits
of our multi-resolution pipeline, compensating for this limitation.

4.3 Robustness Evaluation

To evaluate the robustness of our method, we assess prediction con-
sistency across query pixels, zoom levels, and different illuminations.
Moreover, we evaluate how robust the predictions are to different
thresholds, which we call prediction confidence.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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-

query pixel consistency zoom consistency

illumination consistency

Fig. 7. Robustness. Robustness evaluation of our method with respect to the clicked pixel (left subset), the image crop with increasing zoom levels (middle
subset), and illumination changes (right subset). The images are challenging due to similar albedo (left), strong shading variations on the cushions (middle)
and specular highlights on the toaster (right). For the false-color material similarity maps and comparisons against Materialistic and SAM2, please see the

supplemental document, Figs. 9-12.

To test pixel consistency, we randomly sample up to three ma-
terials per image, and five query pixels per material: Ideally, the
selection predictions for all query pixels belonging to the same ma-
terial would be identical. With regard to zoom consistency, we create
five different crops with increasingly large zoom levels centered on
each query pixel, and evaluate to what extent the same query pixel
results in the same selection in all cases. For illumination consistency,
we use the MULTI-ILLUMINATION dataset [Murmann et al. 2019b],
which includes thirty in-the-wild scenes captured under twenty-five
different illuminations. We sample up to three materials per scene
and measure consistency of the selections across illuminations.

For all consistency evaluations, we compute the average pairwise
Hamming distance (after binarizing the masks with a threshold of
0.5), with lower Hamming distances indicating higher consistency.

As shown in Table 2, our method demonstrates significantly
higher consistency compared to Materialistic, achieving approxi-
mately 1.8X lower Hamming distance. When Materialistic is trained
on our DUMAS dataset, its consistency improves substantially, par-
ticularly across query pixels. This improvement underscores the
benefits of our larger-scale dataset, which features a more diverse
range of materials. Our architecture and training method further
enhance consistency, especially noticeable on the more challenging
Two-LEVEL TEST and MULTI-ILLUMINATION datasets. Comparing
to SAM2 fine-tuned on our DUMAS dataset, our method shows a
slight improvement in consistency; moreover, as showed in Table 1,
our results are more accurate.

Fig. 7 shows qualitative examples for pixel, zoom and illumination
consistency. In difficult scenarios, such as a sofa surrounded by
surfaces of similar color (left), or a cushion with sharp shadows
(middle), our predictions remain consistent and highly confident,
clearly outperforming previous work. Regarding illumination, our
predictions remain reasonably consistent even under very strong
changes, as shown in Fig. 7 (right). For qualitative comparisons to
Materialistic and SAM2, as well as a video showing the consistency
of our method, please refer to the supplemental material.

Finally, we evaluate the robustness of our method in terms of
prediction confidence by measuring the sensitivity of the selection
result (the final binary mask) to the threshold over the similarity
score. Our approach outperforms prior works in this regard, with
full metrics provided in the supplemental material.
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Table 2. Consistency results of various methods (rows) across different query
pixels, zoom levels, and illuminations (subcolumns) on three real-world test
datasets (columns). For single-level methods trained on our DUMAS dataset
(+DUMAS), we train two separate models (one per level) and report the result
of the relevant one per column. All are mean Hamming distances (lower
is better). Note that only consistency is measured here, without assessing
accuracy.

MULTI-ILLUMINATION
Texture Level

MATERIALISTIC TEST Two-LEVEL TEST
Texture Level Subtexture Level Texture Level

Pixel | Zoom | Pixel| Zoom | Pixel |Zoom | Ilumination |

Materialistic 0.041 0.121 0.082 0.200 0.082  0.200 0.071
Materialistic + DuMa$S 0.028 0.087 0.077 0.222 0.059  0.161 0.065
SAM2 + DuMaS 0.025 0.080 0.053 0.165 0.059 0.111 0.039
Ours 0.024 0.071 0.052 0.166  0.041 0.112 0.034

Table 3. Mean results of ablations of our method (rows) across different
metrics (subcolumns) on the two test real-world evaluation datasets and a
challenging subset (columns). For the Single Level ablation, we train two
separate models (one per level) and report the result of the relevant one per
column.

MATERIALISTIC TEST Two-LEVEL TEST CHALLENGING SUBSET
Texture Subtexture Texture Subtexture Texture

L1 ToUl L1} IoUT L1} IoUT L1} IoUT L1] IoU1
Ours, DINO 0.045 0850  0.094 0.616 0.097 0.698 0.107 0.591 0.104 0.644
Ours, Hiera 0.046 0838  0.093 0593 0.080 0.716 0.112 0.581 0.099 0.685
Ours, w/o Multi-Res. 0033 0889  0.081 0.637 0.075 0.740 0.130 0.512 0.122 0.585
Ours, w/o Multi-Sampl. 0036 0.893  0.083 0.622 0.088 0.680 0.133 0.507 0.143 0.517
Ours, Single Level 0.037 0888  0.077 0.643 0.081 0.750 0.106 0.581 0.099 0.685
Ours, Full 0.030  0.896  0.071 0.673 0.069 0.750 0.068 0.694 0.058 0.763

4.4 Ablations

We next analyze the impact of our most critical design decisions.
All variants have been trained the same number of epochs with
the full DUMAS dataset unless otherwise stated. Our full model
includes the DINOv2 image encoder, multi-resolution feature ag-
gregation (Multi-res., Section 3.1.2), and multiple query sampling
(Multi-sampl., Section 3.1.4).

We first explore the effect of the image encoder (Table 3, first two
rows). Replacing DINOv2 features with DINO or Hiera encoding
produces less accurate selections and with noticeably less confi-
dence (lower L1) in all datasets. Both DINO and Hiera seem to be
more biased towards color and lighting than DINOv2, as shown
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w/o multi-res.

w/o multi-sampl. Ours full

\ )

Fig. 8. Ablations. We ablate parts of our method (multi-resolution and multi-sampling, respectively) on two challenging examples containing thin structures
(net and zebra stripes) and albedo entanglement (net has a similar albedo to the white parts of the basketball, in front of a patterned background).

Input & Click

Subtexture editing results
A ‘ \

]

Fig. 9. Editing. We use our method’s selection masks at subtexture level to

perform fine-granular edits of the image’s materials in Photoshop.

qualitatively in the supplemental document. Then, we show results
removing our multi-resolution and multi-sampling approaches, both
in Table 3 and in Fig. 8. Our multi-resolution feature aggregation
improves quality of the predictions (lower L1), which is particularly
visible in the qualitative results, as it drastically improves perfor-
mance when dealing with thin edges, like the basketball net. Our
multi-sampling strategy, on the other hand, improves overall preci-
sion, in particular for texture-level selection. This may stem from
computing gradients on the predicted selection for multiple materi-
als in an image at a time, in every optimization step. Additionally,
this multi-sampling significantly improves confidence by reducing
the sensitivity to the selection threshold, which minimizes the need
for manual adjustments (see results in the supplemental document).

We also assess in Table 3 the effect of jointly training both sub-
texture and texture levels in one model (Ours Full) compared to
training two separate models with a single output, one per level
(Ours, Single Level). Notably, training with all data concurrently
does not negatively impact performance, allowing to have a single

Input & Click Ours Input & Click Ours

Fig. 10. Limitations. Our method struggles with clicks on out-of-focus
regions (top) and long-horizon imagery with changing frequencies (middle).
Textures without individual components (bottom) stretches our definition
of subtexture.

model for both selection levels, and supporting our hypothesis that
jointly estimating both outputs is beneficial for accuracy.

Last, we further evaluate our ablations on a subset of 30 challeng-
ing test cases including fine structures, albedo entanglement, and
strong light variations. We include this full challenging subset in the
supplemental document, Figure 3. The results (Table 3, right-most
columns) show the clear benefits of our multi-resolution component,
which significantly improves performance on thin structures, as
well as our multi-sampling strategy, which improves robustness
overall and helps in scenarios with albedo entanglement and strong
light variations (50% lower L1 and 20% higher IoU in Table 3). We
hypothesize that by sampling multiple query pixels per image dur-
ing training, it is more likely that these challenging cases (e.g., two
pixels with same albedo from different materials, or two pixels from
the same material in areas with strong lighting variation) appear in
the same training batch, improving the gradient.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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4.5 Application: Material Editing

Selection of specific regions within an image is an exceedingly
common and highly useful tool for a number of applications, among
which editing is one of the most representative examples. We show
practical applications of our selection for material editing tasks in
image space, in Fig. 1 (bottom right) and Fig. 9. Our new level of
granularity at the subtexture level, as well as our improved precision
and accuracy, allow users to easily edit challenging scenarios that
would otherwise require significant manual intervention, including
individual texture components such as the flowers of the dress
(Fig. 1), or the deer on the cushion and wallpaper (Fig. 9).

5 DISCUSSION

Several avenues of future work remain open. Clicking on a pixel in
an out-of-focus area of the image may lead to incorrect selections, as
shown in the top row of Fig. 10: as it can be seen, our model cannot
accurately distinguish the flower petals and activates inaccurate
regions in the background (left). The problem mostly goes away
when clicking on an in-focus area of such flowers (right). Images
with long horizon lines may also be problematic, if the image exhibits
strongly varying frequencies due to perspective. In the middle row
of Fig. 10 the first ranks of flowers are selected but the more distant
ones are not (left), or viceversa (right). We believe these limitations
could be addressed by adding more training data with explicit depth
of field effects and outdoor large scenes, respectively. Another idea
to mitigate potential failure cases in practical scenarios could be to
combine multiple selection masks, where a user could optionally
select extra query pixels manually, combining the predictions and
producing improved masks. This strategy could help in cases where
the initial selection misses specific parts of the desired result (e.g.,
middle row in Fig. 10). Negative input queries, subtracting from
the selection, would also be possible in cases where our selection
overselects (e.g., top row, left in Fig. 10). Further, our definition of
subtexture may not easily translate to continuously varying surfaces
like the rainbow wall in the bottom row of Fig. 10. Future work could
explore a more continuous similarity definition to enable a gradient
in the similarity score, following that of the color distance on the
wall. More generally, while we propose an additional selection level,
we do not claim to have decisively solved the inherent ambiguity of
material selection tasks, for which different definitions of what “the
same material” means may be needed, depending on the intended
goal and downstream applications.

6 CONCLUSION

We present a novel method for fine-grained material selection in
images, which works both at texture and subtexture levels, and is
more precise and robust than previous approaches. We evaluate
various ViT backbones and propose a new training scheme and a
large-scale dataset, significantly improving selection quality for fine
structures and challenging scenarios with albedo entanglement and
complex light variation.
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