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following topics:

¢ (S1) Implementation Details
e (S2) Datasets
e (S3) Additional Results

S1 IMPLEMENTATION DETAILS
S1.1  Full Implementation Details

We train our model on our DuUMAS dataset (800,000+ images) for
10 epochs using the Adam optimizer, with a learning rate of le-4
on 4 A100-40GB GPUs, using the DDPS distributed strategy and a
batch size of 4 images per GPU. During training, we sample random
crops, and apply random exposure, saturation, and brightness aug-
mentations. From the image encoder, we extract four intermediate
features (both local and global tokens) from transformer blocks at
indices 2, 5, 8, and 11. For our multi-resolution module, we use dif-
ferent aggregation resolutions per ViT block. After that, the spatial
processing further upscales the aggregated features at each block.
As mentioned in the main paper, our model uses two resolution
levels (n = 2), and the details of the aggregation resolutions are as
follows:

e [; input has resolution r Xr, r being the input resolution of the
VIiT (r = 518 for DINOv2). Given the patch size of DINOv2,
the output features of the image encoder Fy,j have resolution
r/14 at all four transformer blocks.

e [, input has resolution 2r X 2r. After rearranging the 4 tiles in
which the image was split, the output features of the image
encoder F5 j have resolution r/7 at all four transformer blocks.

e For blocks j = 1 and j = 2, we aggregate features at the
highest resolution (r/7), then the spatial processing module
upscales the aggregated features Fggq,1 and Fggg,2 to resolu-
tion r/2.

e For block j = 3, we aggregate features at resolution r/14,
while the spatial processing module upscales the aggregated
features Fgg43 to resolution r/7.
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e For block j = 4, we aggregate features at resolution r/14,
while the spatial processing module keeps the resolution of
the aggregated features Fugq 4 at r/14.

We use area downsampling and bilinear upsampling for aggregation,
while the spatial processing includes a fully-connected layer to ag-
gregate the global token, followed by a 2D convolution and bilinear
upsampling, as mentioned in the main paper. For our multiple query
sampling, we uniformly sample 10 random pixels within the crop
during training.

Training time is approximately 6 days in the aforementioned
setup, while inference time is 150ms per image in a single A100-
40GB GPU, enabling quick user interaction with the model.

S1.2  Other Image Encoders

As mentioned in the main paper, we rely on DINOv2 as the backbone
ViT of our model because we find that it yields higher quality fea-
tures for the material selection task. Nevertheless, our architecture
(including our multi-resolution processing) can be easily adapted to
the chosen ViT and we experiment with alternative options, namely
DINO [Caron et al. 2021] and Hiera [Ryali et al. 2023], described in
this section.

DINO [Caron et al. 2021] is a ViT aiming to maximize the simi-
larity between image embeddings under different augmentations,
leveraging knowledge distillation techniques. Its general represen-
tations have shown high robustness for many downstream tasks,
such as image segmentation, even without task-specific fine-tuning.
Internally, it splits the image into non-overlapping square patches
of size ps X ps, sequentially projected with transformer blocks. This
produces local tokens of size H/ps x W/ps X d, along with an ad-
ditional global token of size d, where H and W denote the original
image resolution, and d represents the feature dimension. We use
DINO’s pre-trained embeddings with ps = 8 and d = 768. As with
DINOv2, we follow prior work [Sharma et al. 2023], and extract four
intermediate features from attention blocks at indices (2, 5, 8, and
11). Consequently, the output of our image encoder with DINO, for
the single resolution configuration, consists of four tensors, each at
1/8 of the original image resolution. For multi-resolution aggrega-
tion, we aggregate at 1/4 resolution for blocks 1 and 2, and at 1/8
for blocks 3 and 4, respectively. Despite its lower patch size that
leads to higher resolution than DINOv2 features, we observe in our
experiments that DINO features are less discriminative, particularly
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for disentangling appearance from color variations, as shown in
Figure 14.

Hiera [Ryali et al. 2023] image encoder follows a different ar-
chitecture by employing a hierarchical patching strategy. It is a
simplified version of earlier hierarchical ViTs [Dong et al. 2022; Li
et al. 2022] that achieves higher accuracy and faster performance
through implementation optimizations and self-supervised training
for the masked autoencoder (MAE) pretext task. Its hierarchical
design allows to retain spatial information and capture global con-
text without keeping an explicit global token, while supporting a
smaller patch size (ps = 4). As a result, Hiera’s intermediate em-
beddings span multiple resolutions and produce sharper feature
boundaries that improve accuracy in dense downstream tasks. Fol-
lowing previous work, we use the Hiera-L variant initialized from
the MAE pre-trained model and finetuned for object selection [Ravi
et al. 2024], using windowed absolute positional embeddings [Bolya
et al. 2023]. Unlike for DINO-based encoders, we observe better
performance when unfreezing the Hiera encoder while training our
material selection pipeline, so we report results with this configu-
ration. The output of our image encoder with Hiera, for the single
resolution configuration, consists of four tensors with resolutions
4—11, é, %, and % of the original image one, and a feature dimen-
sion of d = 256. For multi-resolution aggregation, we aggregate at
the maximum resolution per block. In our experiments, despite its
higher feature resolution which produces sharper prediction edges,
Hiera encoder leads to reduced performance in material selection
compared to DINOv2 (see Table 3 in the main paper, and qualitative
results in Figure 14).

S1.3  SAM2 Fine-Tuning

We fine-tune the state-of-the-art model in object selection SAM2 [Ravi
et al. 2024] for the material selection task, using our DuMAS dataset.
For all our experiments, we use the large configuration of the model,
which includes the Hiera-L [Ryali et al. 2023] image encoder. To fine-
tune the model, we encode our DUMAS dataset as MP4 videos with
1024x1024 resolution and the annotations in CoCoRLE encoding
for efficient storage, as in their SA-V dataset [Ravi et al. 2024]. We
cut our 1-minute videos at 30fps into short clips of 40 frames, and
then sub-sample them by skipping every 6 frames, to increase the
intra-frame distance. We follow previous work [Fischer et al. 2024]
and fine-tune all modules of the model except the image encoder
that we keep frozen. We include their negative sampling during
training, by sampling a positive click with 80% probability, and a
negative click on a random other material with 20% and reverse
the temporal order of the frame sequence with a chance of 50%,
avoiding sampling clicks on the edge of the material masks. We use
the AdamW optimizer with weight decay 0.01 and learning rate
1le-5 until convergence, which takes 1,200K steps. Due to memory
constraints, we use a batch size of 1 with aggregated gradients every
4 steps. Fine-tuning takes approximately 10 days with the aforemen-
tioned setup, while inference time is 180ms per image in a single
A100-40GB GPU.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.

S2  DATASETS
S2.1 Training Dataset: DuMa$S

We show representative examples from our large-scale Dual-level
Material Selection dataset (DUMAS) in Figure 1. Please refer to the
main paper for more information about the creation of this dataset.

S$2.2 Test Datasets

5$2.2.1 Two-Level Test. We show all images from our Two-LEVEL
TEsT dataset and their corresponding (sub)texture annotations in
Figure 2. The background and unannotated regions share the ID
zero, which denotes un-clickable regions. For the few images that
do not have two-level annotations (e.g., the meeting room image),
the subtexture and texture annotations are identical. All 20 images
were manually annotated using LabelMe and come from royalty-
free sources like Pixabay and Unsplash. We will release the dataset
and annotations upon publication.

5§2.2.2 Challenging Subset. Our CHALLENGING SUBSET includes 30
test cases (image and input click) that showcase difficult scenarios
from our test datasets (10 from MATERIALISTIC TEST dataset and 20
from Two-LEVEL TEST dataset). We show all test cases in Figure 3,
each classified among the following scenarios:

o Fine structures: The input click targets a fine structure (e.g., a
basketball net), or the selection mask includes thin details at
the texture or subtexture level (e.g., lettering on the Christmas
sack).

o Albedo entanglement: The scene contains different materials
with similar albedo to that of the input click, which need to
be distinguished.

o Strong light variations: There are areas of the scene with the
same material as the input click but very different appearance
due to strong shadows or lighting reflections.

S3 ADDITIONAL RESULTS

In this section, we include additional results to those reported in the
main paper, specifically: quantitative results on synthetic data (S3.1),
qualitative results of our material selection method (S3.2), qualitative
comparisons to previous works trained on our DUMAS dataset (S3.3),
quantitative assessment of the frame duplication trick for SAM2
(S3.4), additional robustness metrics and qualitative comparisons
(53.5), qualitative ablations (S3.6), and illustrative comparisons to
SAM2’s interactive setting (S3.7).

S$3.1 Quantitative Evaluation on Synthetic Data

In the main paper, we extensively evaluate our method on real-
world in-the-wild photographs (see Sec.4.1.). We include in Table 1
additional evaluation of our method and all the baselines in synthetic
scenes from our DUMAS dataset. In particular, we use 4,325 synthetic
images from the six test scenes not seen during training, which we
will publicly release. Our method significantly outperforms all the
baselines, including those trained with our DUMAS dataset, and
Materialistic using DINOv2 as a backbone.
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Fig. 1. Our DUMAS training dataset. First row shows representative examples from the scenes in our synthetic DUMAS training dataset, including spatially
varying materials with annotations at two levels. As our dataset includes videos, second row shows examples of different frames along a single video of the

same scene.

Table 1. Mean results of various methods (rows) across different metrics
(subcolumns) on the synthetic DuMaS test dataset. For single-level methods
trained on our DuMaS dataset (+DuMaS), we train two separate models
(one per level) and report the result of the relevant one per column. Gray
text indicates cases where the model is evaluated on a different task to the
one it is trained for, and boldface marks the best results.

DuUMAS TEST DATASET
Subtexture Level Texture Level

L1] IoUT F17 1L1| IoUT F17

Materialistic 0.135 0.481 0.587 0.130 0.556  0.649
Materialistic + DINOv2  0.161  0.449 0561 0.133 0.584 0.674
Materialistic + DuMaS ~ 0.096 0.524 0.610 0.100 0.612  0.695
SAM2 “obj. selection 0.106  0.354 0455 0.132 0.387 0.476
SAM2 + DuMaS 0.104 0.490 0597 0.091 0.615 0.703
Ours 0.060 0.626 0.703 0.062 0.707 0.776

S$3.2 Additional Qualitative Results

We show additional qualitative results of our method in Figure 4,
for real-world images from our test datasets. Results demonstrate
the accuracy and confidence of our method at both texture and
subtexture selection levels, even in challenging scenarios. Please
refer to the main paper for more results.

Despite improvement over previous work, we acknowledge fail-
ure cases for a few very challenging examples included in our test
datasets, like the tiger or the fishes in Figure 8.

We conduct an additional qualitative analysis regarding sensitiv-
ity of our method to roughness differences. As shown in Figure 7,
our method can successfully differentiate materials with the same
albedo and different roughness (e.g., Christmas balls, left). We ob-
serve that if the roughness differences occur within a single object
and are too subtle (e.g., climbing holds, right), our method may not
differentiate them. This could be addressed by explicitly including
these materials in the training data.

Table 2. Mean results of the SAM2 model fine-tuned on our DUMAS dataset
(rows) across different metrics (subcolumns) on our two real-world test
datasets (columns). Results show the benefit of using the frame duplication
trick (FDT) that we apply as default for inference (see text for details).

MATERIALISTIC TEST Two-LEVEL TEsT

Texture Level Subtexture Level Texture Level
L1| IoUTF1T L1| IoUTF1T L1| IoUTF17

SAM2+DuMaS w/o FDT =~ 0.085 0.761 0.831  0.138 0.525 0.642 0.096 0.695 0.778
SAM2+DuMa$S 0.060 0.784 0.847 0.103 0.576 0.681 0.071 0.730 0.799

$3.3 Additional Qualitative Comparisons

We show additional qualitative comparisons to previous works fine-
tuned with our DUMAS dataset in Figures 5 (subtexture level) and 6
(texture level). As shown in Table 1 of the main paper, our method
outperforms both Materialistic [Sharma et al. 2023] and SAM2 [Ravi
et al. 2024] methods, also when trained on our data, both in terms of
accuracy of the final selection (binary prediction after thresholding)
and confidence of the predictions.

S3.4 SAM2 Frame Duplication Trick

Following previous work [Fischer et al. 2024], for SAM2 model
evaluations, we duplicate the first frame and use the output of
the second frame in inference. We show in Table 2 that this trick
significantly improves its overall confidence and accuracy, by forcing
the network to use its memory module, fine-tuned for the material
selection task. We always report results using this frame duplication
trick (FDT) in the main paper and supplemental document, unless
stated otherwise.

S$3.5 Additional Robustness Results

We include the robustness evaluation in terms of prediction confi-
dence in Table 3.

For each method, we report the average mean and standard de-
viation of the IoU using 1,000 different thresholds in the range
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[0.001,0.999]. As it can be seen, our method is more robust to the
selected threshold than previous work (upper part of Table 3), with
higher mean and lower std, demonstrating higher accuracy and
lower variability across thresholds. Being less sensitive to the selec-
tion threshold eliminates the need for users to manually tune the
threshold each time, making the process more automatic and user-
friendly. SAM2 fine-tuned on our DUMAS dataset exhibits lower
sensitivity to the threshold than Materialistic, being more robust
despite having lower overall accuracy, as shown in Table 1 of the
main paper.

Regarding ablations of our method (lower part of Table 3), we ob-
serve higher sensitivity to the threshold for DINO and Hiera variants,
mainly due to their less confident predictions overall. Interestingly,
our multiple query sampling module shows highly beneficial to
improve robustness to the threshold, achieving 1.3x lower variabil-
ity across thresholds than the variant without including it (w/o
Multi-Samp.). Additionally, we include more qualitative examples of
robustness for pixel consistency, zoom consistency, and illumination
consistency in Figures 9, 10 and 12, respectively. For every example,
we also include the comparison to previous works Materialistic and
SAM2 + DuMAS (see main paper for further details).

Finally, we evaluate consistency across frames, including an ex-
ample in Figure 11. We implement this as cross-image selection,
selecting a query pixel in the first frame, and using its embedding
as a query across the next frames of the video. Despite not being
explicitly trained for it, our method shows reasonable consistency
in real-world videos, effectively grouping the cushions made of the
same material (even the ones not originally visible in the first frame).

S3.6 Additional Qualitative Ablations

We include additional qualitative ablations in Figure 13, illustrat-
ing the main improvements due to our multi-resolution and multi-
sampling modules in challenging scenarios with fine structures and
albedo entanglement (see also Figure 10 of the main paper).

Figure 14 shows qualitative results of our ablations using different
image encoders, namely DINO [Caron et al. 2021] and Hiera [Ryali
etal. 2023], for images in our test dataset, at texture level. We observe
lower accuracy and confidence in the predictions when using these
alternative ViTs compared to DINOv2, especially in examples when
it is more challenging to disentangle appearance from color (rows 1
and 2).

S3.7 Comparison to SAM2 Interactive Setting

Our material selection model is highly effective and accurate to
select pixels sharing the same texture and subtexture components
within an image, using a single user click. In contrast, SAM2’s
interactive setting requires the user to provide several positive and
negative clicks to refine their selection. While this adds certain
flexibility to the selection modality, it might also be very tedious
and time consuming for selecting materials at texture and subtexture
levels, requiring prior knowledge of areas sharing the same material,
and several clicks, as illustrated in Figure 15.
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Table 3. Results of sensitivity to the selection threshold across different
methods (rows) on our two real-world test datasets (columns). We show
average mean and std loU using 1000 different thresholds in the range
[0.001,0.999] (higher mean and lower std is better).

Two-LEVEL TEsT
Subtexture Level Texture Level

MATERIALISTIC TEST
Texture Level

Sens.TH IoU Sens.TH IoU Sens.TH IoU
Materialistic 0.860 + 0.122 0.451 + 0.107 0.572 + 0.151
Materialistic + DuMaS 0.880 + 0.073 0.516 + 0.147 0.649 + 0.113
SAM2 + DuMa$S 0.881 +0.061 0.591 + 0.064 0.722 + 0.054
Ours, DINO 0.875 + 0.076 0.585 +0.127 0.677 £ 0.107
Ours, Hiera 0.859 +0.093 0.527 +0.129 0.736 + 0.113
Ours, w/o Multi-Res. 0.898 + 0.076 0.607 + 0.131 0.763 + 0.113
Ours, w/o Multi-Sampl. 0.925 + 0.061 0.573 + 0.147 0.705 + 0.118
Ours, Single Level 0.925 + 0.046 0.606 + 0.144 0.756 + 0.099
Ours Full 0.930 + 0.042 0.670 +0.111 0.793 + 0.089

S$3.8 Multi-selection Combination

One idea to mitigate potential failure cases in practical scenarios
could be to combine multiple selection masks. We have evaluated
this by, given an initial input pixel, randomly sampling N additional
query pixels from the initial similarity score map; we then combine
the N+1 resulting similarity score maps by computing the per-pixel
median (and, as with all the results in the paper, binarize the re-
sulting similarity to produce the final mask using a threshold of
0.5). We include the results of our experiments (with N = 2, 4 and
10) in Table 4. As it can be seen, this combination tends to slightly
improve the original selection in most of the results, although we
qualitatively observe it is counter-productive in a few cases. Note
that this experiment has been designed to automatically evaluate
multi-selection and thus extra query pixels are randomly selected,
whereas in practice a user would be selecting extra query pixels
manually; thus, this experiment is a conservative evaluation of the
potential of multi-selection in our method, also discussed in the
main paper.

Table 4. Quantitative evaluation of multi-selection combination, with N
additional query pixels (N=0 means without multi-selection, our default
setting), on our two real-world test datasets.

Two-LEVEL TEsT
Subtexture Level Texture Level

L1| IoUTF17 L1| IoUTF11
0.071 0.673 0.766 0.069 0.750 0.823
0.070 0.675 0.767 0.067 0.730 0.823

0.075 0.671 0.760 0.065 0.732 0.825
0.074 0.664 0.753 0.073 0.738 0.811

MATERIALISTIC TEST
Texture Level

L1| IoUTF11

0.030 0.896 0.935
0.027 0.894 0.933
0.028 0.897 0.936
=10  0.027 0.896 0.935
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Fig. 2. Our manually annotated Two-LevEL TEST evaluation dataset of 20 real-world images, with subtexture- and texture annotations per image, respectively.
For images where subtexture- and texture-level coincide, the annotations are identical. Subtexture- and texture-levels are mapped to random colors here for
visibility; background- and unannotated regions have ID zero and are colored black.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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Fig. 3. Our CHALLENGING SUBSET test dataset contains 30 clicks on challenging material selections, with the first two rows from the MATERIALISTIC TEST dataset,
and the bottom four rows from our Two-LEVEL TesT dataset. We show the ground-truth selection binary masks for each click in black and white (for better
visibility) next to each image, with subtexture and texture in the top and bottom mask, respectively. For the first two rows, subtexture- and texture-annotations
are identical, since the images are from the (single-level) MATERIALISTIC TEST dataset.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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Input & Click GT Subtexture Materialistic + DuMa$S SAM2 + DuMa$ Ours

Fig. 5. Additional comparisons between our method, and Materialistic and SAM2 trained on our DUMAS dataset at the subtexture level. Only our method is
able to obtain clean subtexture selections.

Input & Click GT Texture Materialistic + DuMa$S SAM2 + DuMa$ Ours

Fig. 6. Additional comparisons between our method, and Materialistic and SAM2 trained on our DUMAS dataset at the texture level. Our results are more
accurate and less biased by color.

Input & Click Input & Click Input & Click Input & Click

A

Fig. 7. Our method can differentiate between materials with the same albedo and different roughness (left columns), but sometimes struggles when the
differences are too subtle and appear within an object (right columns), presumably since these cases are under-represented in our training dataset.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.



185:10 « J. Guerrero-Viu et al.

Input & Click GT Materialistic Ours

Fig. 8. Challenging examples where our method cannot accurately recover the selected material. Our results show a slight improvement over previous work in
terms of confidence, but are inaccurate for selecting the material of the tiger (maybe due to the very high frequency details of the fur) or the fishes (probably
affected by the underwater reflections).

Input & Click Materialistic SAM2 + DuMa$S Ours Input & Click Materialistic SAM2 + DuMa$ Ours

T K

Fig. 9. Pixel consistency. We evaluate the consistency of the selection by clicking on different query pixels of the same material. Our method produces the best
overall results —invariant to the input clicks— while Materialistic, and SAM2 trained with our dataset, produce more unpredictable outcomes depending on the
selected region.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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Input & Click Materialistic SAM2 + DuMa$S Ours Input & Click Materialistic SAM2 + DuMa$S Ours

Fig. 10. Zoom consistency. We evaluate the consistency of the selection at different zoom levels. As shown in both examples, our output is consistent even in
complex scenes, like the church. On the contrary, Materialistic’s outputs are highly dependent on the zoom. SAM2 fine-tuned with our dataset works well for
the cushions but fails drastically, and is clearly inconsistent across zoom levels, on the church example.

Input & Click Our selection across frames

s

Fig. 11. Our selection on a clicked frame (left), propagated to the remaining frames of a video, progressing towards the right. Our results are consistent,
successfully grouping the cushions made of the same material, even when not initially visible in the first frame.

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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Input & Click Materialistic SAM2 + DuMa$S Ours Input & Click Materialistic SAM2 + DuMa$S Ours

A

0. i

=]

Fig. 12. Illumination consistency. We evaluate the consistency of our method under varying illumination conditions using the MuLTI-ILLUMINATION dataset [Mur-
mann et al. 2019]. We click on the same pixel across all examples. While strong lighting variations (second row) have a slight impact on our estimation,
our method demonstrates high consistency overall. This is particularly notable in the challenging scene containing metallic materials, whose appearance
changes significantly under varying illumination. In contrast, Materialistic fails to produce consistent outputs. SAM2 fine-tuned with our dataset exhibits
quite consistent results, despite failing in some challenging examples (e.g., second row, left).

ACM Trans. Graph., Vol. 44, No. 6, Article 185. Publication date: December 2025.
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w/o multi-sampl.

Ours full

Input & GT w/o multi-res.

Ours full

Input & GT
—

s

w/o multi-res.

w/o multi-sampl.
y =ys

: [

Fig. 13. Additional qualitative ablations for our multi-resolution and multi-sampling components, in difficult scenarios from our CHALLENGING SUBSET. When
removing our multi-resolution pipeline, performance is especially degraded on edges and fine structures, such as the text on the sack (left) and the edges of
the window (right). Removing our multi-sampling strategy leads to less confident predictions overall (left) and selection of incorrect areas with similar albedo
like the blue wall over the window (right).

Input & Click GT Ours, DINOv1 Ours, Hiera Ours full (DINOv2)

Fig. 14. Qualitative results of ablations changing the image encoder. We tested DINO and Hiera, and both performed worse than our final choice, DINOv2.

Input & Click Ours SAM2, progressively adding more clicks

Fig. 15. Comparison of our method vs. SAM2 material selection capabilities. SAM2 requires nine clicks, both positive and negative, to select the flowers on the
dress in the upper row, and still does not achieve a satisfactory outcome on the car’s metal material in the bottom row. This process also assumes that there is
a user in the loop that can iteratively let the selection know what has been missed/overselected. Note that the click and mask visualization from SAM2 is
different here (i.e., blue overlay for selection masks) since we use the official SAM2 demo at https://sam2.metademolab.com.
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