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Figure 1: Two neural materials rendered using five BRDF importance-sampling methods. To achieve equal render times, we
adjust the number of samples per pixel (spp); from left to right: 33 spp, 32 spp, 32 spp, 25 spp, 32 spp.

ABSTRACT
Neural material representations have recently been proposed to
augment the material appearance toolbox used in realistic render-
ing. These models are successful at tasks ranging from measured
BTF compression, through efficient rendering of synthetic displaced
materials with occlusions, to BSDF layering. However, importance
sampling has been an after-thought in most neural material ap-
proaches, and has been handled by inefficient cosine-hemisphere
sampling or mixing it with an additional simple analytic lobe. In

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0159-7/23/08.
https://doi.org/10.1145/3588432.3591524

this paper we fill that gap, by evaluating and comparing various pdf-
learning approaches for sampling spatially varying neural materials,
and proposing new variations of these approaches. We investigate
three sampling approaches: analytic-lobe mixtures, normalizing
flows, and histogram prediction. Within each type, we introduce
improvements beyond previous work, and we extensively evaluate
and compare these approaches in terms of sampling rate, wall-clock
time, and final visual quality. Our versions of normalizing flows
and histogram mixtures perform well and can be used in practical
rendering systems, potentially facilitating the broader adoption of
neural material models in production.
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1 INTRODUCTION
Rendering photo-realistic images of 3D scenes requires using phys-
ically plausible material models. Analytic bidirectional scattering
distribution functions (BSDFs), typically based on microfacet the-
ory, have been the dominant choice in the past decade. Combined
with spatially varying parameters (diffuse and specular reflectance,
roughness, normal and displacement maps), these models are ca-
pable of approximating a wide variety of appearances. However,
not all real-world materials have reflectance functions that fit the
analytic paradigm well. Furthermore, displacement mapping is ex-
pensive, and the cheaper normal mapping has only limited ability
to realistically approximate surface mesostructure, ignoring occlu-
sions, inter-reflections and parallax effects.

Recently, neural representations have been proposed to aug-
ment the material appearance toolbox [Rainer et al. 2019, 2020;
Kuznetsov et al. 2021; Baatz et al. 2021; Sztrajman et al. 2021; Fan
et al. 2022]. Unlike analytic models, neural models can theoretically
represent any material, e.g., measured reflectance in the form of
bidirectional texture function (BTF) data, or complex mesostructure
defined using synthetic or real displacement data. The utility of
these methods ranges from measured BTF compression, through
efficient rendering of synthetic displaced materials with occlusions,
to BSDF layering. The methods vary in their neural-network archi-
tectures, but they typically combine learned spatial-feature textures
and fully connected blocks to approximate 6D reflectance functions
over surface position, incoming and outgoing directions.

However, importance sampling has been an after-thought in most
neural-material works. In NeuMIP [Kuznetsov et al. 2021] and its
extension to curved-surface silhouettes [Kuznetsov et al. 2022],
importance sampling is handled via simple Lambertian (i.e., cosine-
hemisphere) sampling, which is ineffective for specular materials.
Works on neural BRDF representation [Sztrajman et al. 2021] and
BSDF layering [Fan et al. 2022] perform importance sampling via
mixtures of Lambertian and Gaussian (or Blinn-Phong) lobes with
network-predicted parameters; studying the efficiency of this ap-
proach has not been a core goal of these prior works. However,
practical Monte Carlo rendering systems require all materials to
provide three core interfaces at each surface shading point: evaluat-
ing the BSDF, sampling it, and evaluating the sampling probability
density function (pdf); the pdf is expected to be approximately
proportional to the BSDF. The latter two operations are needed
for obtaining unbiased rendering as well as implementing multiple
importance sampling (MIS) [Veach 1997] which is key to achieving
robustness in complex production scenarios.

The objective of this paper is to fill this gap, by evaluating and
comparing various pdf-learning approaches for sampling neural
materials, as well as proposing new variations of these approaches.
Specifically, we show our improved version of the analytical mixture
method [Sztrajman et al. 2021; Fan et al. 2022], as well as improved

methods based on normalizing flows [Kobyzev et al. 2019] and a
novel histogram-mixture prediction method inspired by Zhu et al.
[2021] but significantly extended with new techniques. We find that
both normalizing flows and histogrammixtures performwell across
a selection of neural materials, while the improved analytic mixture
is competitive for some but not all materials. In terms of wall-
clock time, the histogram mixture method tends to perform best,
while normalizing flows are also competitive, especially in terms
of sampling rate (i.e., number of samples per pixel); performance
depends on scene complexity and rendering cost. Our evaluation
focuses on a NeuMIP-style architecture (Fig. 2), simplified to 2D
feature textures instead of multi-resolution pyramids, but applies
to any similar architectures parameterized by feature textures.

Our key contribution is a thorough evaluation of importance
sampling methods for neural materials:

• We study three sampling approaches: analytic mixtures, nor-
malizing flows, and histogram prediction (Section 3).

• Within each approach, we improve upon previous work and
extensively evaluate and compare these approaches, in terms
of sampling rate, wall-clock time, and final visual quality
(Fig. 1 and Section 4).

Based on our evaluation results, we recommend our histogram
mixture prediction as the overall best-performingmethod. However,
our normalizing-flow variant can do better at equal sampling rate
and could become overall best-performing in complex scenes. We
believe our methods facilitate the broader practical adoption of
neural material models in production rendering. They could also
have impact beyond material importance sampling, such as in path
guiding and complex luminaire sampling.

2 RELATEDWORK
Neural materials. Learning to sample neural materials is an in-

stance of the more general problem of learning a conditional proba-
bility distribution 𝑝 (𝜔𝜔𝜔 |x,𝜔𝜔𝜔 i), where x is a point in a 3D scene,𝜔𝜔𝜔 i is
the direction of the incoming path and𝜔𝜔𝜔 is an outgoing direction.
This problem occurs repeatedly in 3D rendering: for example, path
guiding is the problem of sampling, for a given path vertex x, a
direction𝜔𝜔𝜔 that is likely to contribute significant incoming radiance
𝐿(x,𝜔𝜔𝜔). A similar situation occurs in complex-luminaire render-
ing, where the goal is to sample a direction𝜔𝜔𝜔 toward a luminaire
point with strong emission. Therefore, methods from all of these
areas are relevant to neural material sampling, and we will eval-
uate some of these ideas in our context (specifically, normalizing
flows and histogram prediction methods), in addition to the simple
analytical-mixture methods previously used for neural materials.

Neural-material representations have recently received much
attention, as they show promise to overcome limitations of tradi-
tional analytic BSDFs with parameter textures and displacement
maps, or measured and tabulated BTF data. Rainer et al. [2019, 2020]
focused on BTF compression. [Kuznetsov et al. 2022] showed how
to represent synthetic or real materials with significant parallax and
occlusion effects in a neural form that is much more efficient to eval-
uate than true microgeometry. Sztrajman et al. [2021] and Fan et al.
[2022] have approximated neural BSDFs with architectures allow-
ing for high specularity and (in the latter work) layering operators.
These approaches can theoretically represent any material data, be
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it complex synthetic microgeometry with displacements, shadows
and inter-reflections, or real measured reflectance functions. Neural
materials are gaining in importance, but are still lacking a thorough
exploration of importance sampling—a component that is crucial
for broader practical adoption.

Analytic approximations. Cosine-hemisphere sampling of a neu-
ral material [Kuznetsov et al. 2021, 2022] is inefficient unless the
material is very rough. To handle a wider variety of reflectance func-
tions, some recent works fit analytic lobes to the local reflectance at
a shading point, which have tractable pdf evaluation and sampling.
Sztrajman et al. [2021] fit an entire Blinn-Phong model per spa-
tial location, using a neural network that predicts two parameters
(glossiness and diffuse/specular ratio) from a local feature vector
𝜑𝜑𝜑 . Fan et al. [2022] take a similar approach to predict a mixture
of a Lambertian and Gaussian lobe (including mean and variance)
given 𝜑𝜑𝜑 and𝜔𝜔𝜔 i. This approach is slightly more general, since the
Gaussian lobe mean does not need to be on the reflected direction,
allowing for additional effects like varying specular normal. While
these analytic predictions can be sampled efficiently, they dimin-
ish the key advantage of neural materials, which is the ability to
represent precisely the materials that do not fit well with analytic
BRDF models. We propose and study an improved version of Fan
et al.’s method with more Gaussian lobes which uses a similarly
compact multi-layer perceptron (MLP) as Sztrajman et al. [2021]
but extends to the complex spatially varying scenario. For training,
Sztrajman et al. resort to supervised learning by using the fitted
Blinn-Phong parameters of Ngan et al. [2005], while we directly
maximize the likelihood of samples, avoiding the limitations of
manually defined metrics.

Normalizing flows. A family of methods for fitting general prob-
ability distributions, called normalizing flows, has been proposed
by the machine-learning community [Dinh et al. 2014; Kobyzev
et al. 2019]. The key idea is to learn a bijective, invertible mapping
𝑦 = 𝑔(𝑧;𝜃 ) between the learned distribution 𝑝 (𝑦) and a simple base
distribution 𝑝𝑧 (𝑧) (typically Gaussian or uniform). Moreover, the
mapping 𝑔 should have an easily computable Jacobian determinant.
This allows for efficient sampling of the resulting pdf (by sampling
the base distribution and passing the sample 𝑧 through 𝑔) as well
as efficient pdf evaluation (by mapping a point 𝑦 through the effi-
cient inverse 𝑓 = 𝑔−1 and computing the base pdf and the Jacobian
determinant). The function 𝑔 is sometimes called a pushforward
while 𝑓 −1 is called a normalizing flow, since it maps (flows) the
complex target distribution onto a much simpler (often Gaussian),
normalized distribution. Many architectures have been proposed
to implement 𝑓 and 𝑔. Please refer to the survey of Kobyzev et al.
[2019] for an overview of the design decisions.

A general application of normalizing flows to sampling problems
in graphics, such as path guiding, was presented by Müller et al.
[2019]. They use a large U-shaped neural network with fully con-
nected layers to predict parameters for the piecewise polynomial
coupling transforms that warp the initial uniform distribution to
the target. Müller et al. showed that the learned pdfs outperform
state-of-the-art sampling methods for equal sample counts but not
in terms of wall-clock time. They acknowledged that the practical-
ity of their method is not immediate as its cost is higher than the
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Figure 2: Neural materials can (a) encode various appearance
effects: specular/glossy reflectance, displacement, anisotropy,
and multi-layered BRDFs. (b) The NeuMIP architecture uses
two feature textures and two MLPs. Only the last step de-
pends on the light direction, so it is the only part that re-
quires importance sampling. (c) The model is trained on
synthetically rendered slices of the 6D reflectance function
with varying camera and lighting directions. (d) Ourmethods
learn to importance sample neural materials, conditioned
on the pretrained NeuMIP features.

gains from the better importance sampling achieved. They did not
study importance sampling for materials.

For materials, Xie et al. [2019] used normalizing flows to ap-
proximate microfacet BRDFs with multiple scattering by fitting
data simulated using geometric optics on actual heightfield micro-
geometry. Their method employs efficient affine transformations
including conditional scaling and translation. While this exact ar-
chitecture could be used for neural-material sampling, we found
the fitted pdfs were not of sufficiently high quality, and we propose
a modified architecture. The comparison can be seen in Table 2.

We build upon a more advanced invertible transformation (typi-
cally neural spline flows [Durkan et al. 2019]) introduced in the nor-
malizing flow literature that we found to maximize expressiveness.
We apply additional techniques to keep the architecture efficient
enough to achieve a gain in wall-clock time.

Histogram prediction. Instead of learning invertible transforma-
tions or lobe mixtures, we can predict a histogram (a discretized pdf
approximation) given the conditional information. This approach
is only feasible in low dimensions but is effective for 2-dimensional
material importance sampling. To our knowledge, the only related
targets importance sampling complex luminaires [Zhu et al. 2021].
It learns an MLP to predict a small image of the luminaire from a
given view, which is then used for evaluation and sampling. Our
histogram-mixture method significantly extends this idea.
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3 METHODS
In this section, we introduce key concepts, followed by the three
sampling method types evaluated in this paper.

Preliminaries. Wewould like to find an approximation 𝑝 (𝜔𝜔𝜔 |𝜑𝜑𝜑,𝜔𝜔𝜔 i)
to a target pdf 𝑝∗(𝜔𝜔𝜔 |𝜑𝜑𝜑,𝜔𝜔𝜔 i) over outgoing directions𝜔𝜔𝜔 , conditioned
on an incoming direction𝜔𝜔𝜔 i and a local feature vector 𝜑𝜑𝜑 that en-
codes the material properties at a given location. The target pdf 𝑝∗
is the luminance of the BRDF lobe at that location and direction,
normalized to integrate to 1 over the hemisphere: this is the perfect
importance-sampling distribution. We study different methods to
approximate 𝑝∗: all are able to evaluate the approximation 𝑝 for
a given 𝜔𝜔𝜔 i as well as sample 𝜔𝜔𝜔 from it efficiently. Note that the
terms incoming and outgoing refer to the direction of simulation.
We consider BRDFs, which are non-zero in the top hemisphere; the
technical task of extending to full BSDFs we leave for future work.

Projected hemisphere. Our goal is to sample proportionally to the
product of BRDF and cosine foreshortening on the unit hemisphere
H . This is equivalent to sampling the projection of the BRDF (with-
out cosine) onto the unit diskH⊥. Such a pdf can be transformed
into a hemispherical one via multiplication with the cosine term
(division in the opposite direction). We choose to fit distributions
of unit-disk projections 𝜔𝜔𝜔⊥ ∈ H⊥. For most methods, the planar
unit disk is a more convenient domain for defining the pdfs.

Application to NeuMIP. Our approach couldwork formost neural-
material representations, but we specifically learn sampling for a
variant of NeuMIP [Kuznetsov et al. 2021], where the BRDF depends
only on a learnt 8-dimensional feature vector𝜑𝜑𝜑 that is retrieved from
a given UV coordinate. In NeuMIP, the UV coordinate is corrected
by a separate offset module to handle parallax effects; the offsetting
happens before BRDF importance sampling and is orthogonal to
our method. We do not consider the multi-resolution version of
NeuMIP (trilinearly-interpolated pyramid of feature textures), nor
its silhouette extension [Kuznetsov et al. 2022]. These methods are
also orthogonal to BRDF importance sampling, so they are likely
to work with our approach as well.

Three sampling methods. We consider three neural sampling ap-
proaches. The first one predicts a mixture of a few simple analytical
lobes (Lambertian and Gaussian). The second one is based on nor-
malizing flows, and the third predicts discretized histograms.Within
each category we present a method that improves over previous
work for our application. In the following subsections we describe
these methods, and in Section 4 we analyze their performance in
terms of variance reduction and computational cost.

Fitting. We train neural networks that fit the pdf 𝑝 to the ground
truth 𝑝∗ by minimizing the KL divergence 𝐷𝐾𝐿 (𝑝∗∥𝑝) between the
two. This is equivalent to maximizing the log-likelihood (with re-
spect to 𝑝) of directions sampled from the ground truth distribution
𝑝∗. In practice, in every training batch we sample from the ground-
truth distribution 𝑝∗(𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) (discretized to a high-resolution grid
of directions𝜔𝜔𝜔⊥ for a randomly chosen value of the condition𝜑𝜑𝜑,𝜔𝜔𝜔 i),
evaluate the log pdf of the trained model 𝑝 , and back-propagate to
update the neural-network parameters.

3.1 Mixture of analytical lobes
Improved baseline analytical mixture. A baseline method [Fan

et al. 2022] approximates the desired pdf 𝑝∗(𝜔𝜔𝜔 |𝜑𝜑𝜑,𝜔𝜔𝜔 i) by predicting
a combination of a Lambertian lobe and an isotropic 2D Gaussian
lobe, given 𝜑𝜑𝜑 and 𝜔𝜔𝜔 i. The predicted parameters are the (scalar)
standard deviation 𝜎 of the Gaussian lobe and the relative weight
𝑤 between the two lobes. However, this approach is too limited
to represent even materials with local shading normals which are
very common in neural BTFs including NeuMIP. To that end, we
improve the baseline by also predicting the mean 𝜇𝜇𝜇 of the Gaussian
lobe:

𝑝 (𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) = 𝑤
1
𝜋
+ (1 −𝑤)𝐺 (𝜔𝜔𝜔⊥; 𝜇𝜇𝜇, 𝜎), (1)

where 𝐺 (𝜔𝜔𝜔⊥; 𝜇𝜇𝜇, 𝜎) is a normalized 2D Gaussian with mean 𝜇𝜇𝜇 and
standard deviation 𝜎 , evaluated at the projected direction𝜔𝜔𝜔⊥. The
inputs to theMLP are the feature vector𝜑𝜑𝜑 and the direction𝜔𝜔𝜔 i in the
local shading frame, while the outputs are the mixture parameters:
𝜇𝜇𝜇, 𝜎 , and 𝑤 . Note that the Lambertian pdf on the projected hemi-
sphere is a constant 1/𝜋 , i.e., uniform sampling on the projected
hemisphere is equivalent to cosine sampling on the hemisphere.

Our analytical mixture. To better capture multi-modal highlights
or highlights with non-Gaussian or asymmetric falloff, we further
choose a mixture of one Lambertian lobe and two axis-aligned
anisotropic Gaussian lobes with diagonal covariance matrices:

𝑝 (𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) = 𝑤1
1
𝜋
+𝑤2𝐺𝑑 (𝜔𝜔𝜔⊥; 𝜇𝜇𝜇1,𝜎𝜎𝜎1) +𝑤3𝐺𝑑 (𝜔𝜔𝜔⊥; 𝜇𝜇𝜇2,𝜎𝜎𝜎2), (2)

where 𝐺𝑑 (𝜔𝜔𝜔⊥; 𝜇𝜇𝜇,𝜎𝜎𝜎) is a 2D Gaussian with mean 𝜇𝜇𝜇 and standard
deviations 𝜎𝜎𝜎 = (𝜎𝑥 , 𝜎𝑦) in the 𝑥 and 𝑦 axes. The three weights are
positive and sum to 1, and are predicted by a simple MLP with
one hidden layer, along with the corresponding Gaussian means
and standard deviations. Similarly, the inputs to the MLP are a
feature vector𝜑𝜑𝜑 and direction𝜔𝜔𝜔 i in the local shading frame, and the
outputs are the parameters of the mixture: 𝜇𝜇𝜇1,𝜎𝜎𝜎1, 𝜇𝜇𝜇2,𝜎𝜎𝜎2,𝑤1,𝑤2,𝑤3
(see Fig. 3). More components or full anisotropy can potentially
capturemore complex distributions but increase the fitting difficulty
and the computational workload for common cases with only one
highlight. We compromise with two diagonal Gaussian lobes.

Invalid samples. The support of the above two pdf mixtures is
wider than the unit disk, i.e., outside the BRDF support, meaning
that in practice some samples will be invalid (i.e., off the hemi-
sphere). The resulting Monte Carlo estimates thus have zero values,
as also happens for importance sampling analytic BRDFs like micro-
facet models [Walter et al. 2007], without posing practical issues.

3.2 Normalizing flows
Neural materials have arbitrary reflection profiles, embedded local
normals, texture, and potentially complex layered (anisotropic) be-
haviors. A mixture of simple lobes with a few trainable parameters
is not expressive enough to always provide accurate importance
sampling, also considering the difficulty in determining the number
of mixture components required for all materials. Normalizing flows
provide a compelling alternative for our application, as they sup-
port both sampling and density evaluation, and have been shown
to be able to fit complex, multi-modal distributions.
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Figure 3: Our analytical-lobe mixture method takes as input
the neural-material features at the UV surface location and
the viewing direction to infer the parameters of three lobes,
one Lambertian and two anisotropic Gaussians, to capture
diffuse reflection and (potentially multi-modal) highlights.
High performance is ensured by using an MLP with one
hidden layer.

Normalizing flows learn a bijective mapping between a simple
base distribution and (an approximation of) a complex target dis-
tribution, and can be used to generate samples from the latter. A
carefully designed architecture with an autoregressive property en-
sures the mapping’s Jacobian is triangular, with an easy-to-compute
determinant, which is needed for pdf evaluation. The architecture
also ensures tractable invertibility of the mapping [Dinh et al. 2016;
Papamakarios et al. 2017], useful for multiple importance sampling.

As a base distribution 𝑝𝑧 we use a 2D Gaussian. We learn a bijec-
tive function 𝑔 to map samples 𝑧 from 𝑝𝑧 to samples 𝑦 = 𝑔(𝑧 |𝜑𝜑𝜑,𝜔𝜔𝜔 i)
that approximately follow the target 𝑝∗(·|𝜑𝜑𝜑,𝜔𝜔𝜔 i). If the inverse 𝑓 =

𝑔−1 and its Jacobian determinant are efficiently computable, we can
evaluate the learned distribution 𝑝 at a point (direction)𝜔𝜔𝜔⊥ as

𝑝 (𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) = 𝑝𝑧 (𝑧) ·
���� 𝜕𝑧𝜕𝜔𝜔𝜔⊥

���� , where 𝑧 = 𝑓 (𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) . (3)

This framework satisfies our goal of fitting pdfs that can be evalu-
ated and sampled from efficiently, provided we can find a neural
network to represent 𝑓 (and 𝑔) with the desired properties. A de-
tailed exploration of the neural architectures used for normalizing
flows is out of our scope, and we refer the reader to the surveys of
Kobyzev et al. [2019] and Papamakarios et al. [2021].

We did ablations on representative state-of-the-art transforma-
tions, from simple affine transformations [Dinh et al. 2016] to free-
form monotonic neural networks [Wehenkel and Louppe 2019;
Huang et al. 2018]. The former has limited flexibility due to the
simple transformation while the latter lacks an analytical inverse.
We concluded that monotonic piecewise polynomials [Müller et al.
2019; Durkan et al. 2019; Dolatabadi et al. 2020] achieve the best
balance, providing similar expression power while being efficient
for computing the inverse. We build upon monotonic piecewise
rational quadratic splines [Durkan et al. 2019] which provide more
flexibility compared to RealNVP [Dinh et al. 2016] and piecewise
polynomials [Müller et al. 2019]. On the other hand, since we are
working with distributions of only two dimensions, there is no
significant difference in performance between coupling layers and
autoregressive architectures. We choose coupling transforms due to
their simplicity. Namely, each invertible transformation is applied
onto only one dimension of𝜔𝜔𝜔⊥ and we couple the two transforma-
tions together to fuse the dimensions.

Below we detail the monotonic piecewise rational quadratic
(RQ) spline and our corresponding application. We split the square

32

32 32 RQ spline

reference

predicted

Gaussian
sampling

coupling
transform

coupling
transform
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features

view
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Figure 4: Our lightweight normalizing-flow model trans-
forms input samples (𝜔0, 𝜔1) to a (projected) direction𝜔𝜔𝜔⊥ =

(𝜔 ′
0, 𝜔

′
1). The input samples are generated from a base Gauss-

ian distribution with MLP-inferred mean and standard de-
viation. Each is then warped by an analytically invertible
piecewise rational quadratic (RQ) spline. The spline param-
eters (bin widths, bin heights, derivatives) are inferred by
another small MLP.

region [−1, 1] of the initial 𝑧 space and target𝜔𝜔𝜔⊥ space into several
intervals. Then within each interval, we learn a monotonically
increasing rational-quadratic function (we omit the interval index
for brevity):

𝑧 = 𝑓 (𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) = 𝑧0 +
(𝑧1 − 𝑧0) [𝑠𝜉2 + 𝛿0𝜉 (1 − 𝜉)]
𝑠 + [𝛿1 + 𝛿0 − 2𝑠]𝜉 (1 − 𝜉) , (4)

where 𝜔 is just one dimension (𝑥 or 𝑦) of 𝜔𝜔𝜔⊥, 𝜉 (𝑧) = 𝜔−𝜔0
𝜔1−𝜔0

, 𝑠 =
𝑧1−𝑧0
𝜔1−𝜔0

, and 𝜔0(1) , 𝑧0(1) and 𝛿0(1) are the locations and derivatives
at the left (right) boundary of each interval. Those are predicted
by a 3-layer MLP taking (𝜑𝜑𝜑 , 𝜔𝜔𝜔 i) and the other dimension of 𝜔𝜔𝜔⊥
as input. We use 20 intervals to capture the pdf variation. Solving
and selecting the correct root of a quadratic equation gives the
inverse of the transformation. We refer the reader to Durkan et al.
[2019] for Jacobian computation and further details. Since we have
two dimensions in the target pdf variable 𝜔𝜔𝜔⊥, the 3-layer MLP
inference and the inverse of the above transformation need to
run twice during sampling. Note that the predicted splines can
be shared between the pdf query and sample routine for multiple
importance sampling at each query point (𝜑𝜑𝜑 ,𝜔𝜔𝜔 i). Figure 4 illustrates
our architecture.

The rich information encoded in the conditional neural feature
vector 𝜑𝜑𝜑 helps us to greatly simplify our importance sampling net-
work of invertible transformations to capture the complex spatially
varying pdfs. Unlike previous work [Müller et al. 2019; Xie et al.
2019], we further use a conditional Gaussian base distribution that
depends on (𝜑𝜑𝜑,𝜔𝜔𝜔 i), instead of using a uniform distribution or a
Gaussian distribution with fixed zero mean and unit variance. Con-
ditional normalizing flows have been studied for super-resolution
and image segmentation tasks [Winkler et al. 2019]. As we show
in Section 4 below, this conditional distribution helps us to further
reduce the total architecture size (one 3-layer MLPs used in the
flow, and one 2-layer MLP to predict the base-Gaussian parameters).
Moreover, the conditional probability is guaranteed to be normal-
ized by construction. The flat log-log convergence plots in Fig. 8
have the expected slope, which confirms the unbiasedness.
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3.3 Histogram prediction
Another approach for importance sampling is to directly predict
an easy-to-sample distribution. We opt for a piecewise constant
2D distribution, i.e., a histogram, represented as a regular grid of
bin values. Following previous work which uses a low-resolution
predicted rendering of a complex luminaire as a sampling distri-
bution [Zhu et al. 2021], we predict a histogram approximating
𝑝∗(𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) through an MLP taking the condition (𝜑𝜑𝜑,𝜔𝜔𝜔 i) as input.

We found that a direct application of this idea does not perform
well in our setting (called ‘histogram (baseline)’ in Table 2). The
reason is likely that while a luminaire can be always centered in the
predicted histogram, our pdf lobes can have very different centers
and shapes as the condition (𝜑𝜑𝜑,𝜔𝜔𝜔 i) varies. To this end, we present a
variant that fits our distributions better and is also computationally
efficient. Instead of directly predicting a histogram for each query,
we assume these histograms can be decomposed into histogram
mixtures, i.e., weighted combinations of shared-basis histograms:

𝑝 (𝜔𝜔𝜔⊥ |𝜑𝜑𝜑,𝜔𝜔𝜔 i) =
𝐾∑︁
𝑘=1

𝑤𝑘 (𝜑𝜑𝜑,𝜔𝜔𝜔 i) H𝑘 (𝜔𝜔𝜔⊥ |𝜔𝜔𝜔𝑘 , 𝑡𝑘 (𝜑𝜑𝜑,𝜔𝜔𝜔 i)), (5)

𝜔𝜔𝜔𝑘 = 𝑅(𝜔𝜔𝜔 i, 𝜙𝑘 (𝜑𝜑𝜑,𝜔𝜔𝜔 i)), (6)

where H𝑘 are 𝐾 basis histograms, globally shared across the neural
material,𝑤𝑘 are the corresponding mixture weights; 𝑅 represents
azimuthal rotation, 𝜙𝑘 ∈ [0, 2𝜋] are rotation angles applied to𝜔𝜔𝜔 i,
and 𝑡𝑘 ∈ [0, 1] is a scalar latent code. The rationale behind the
2D (𝜙𝑘 , 𝑡𝑘 ) parameterization is to efficiently encode continuous
changes in the BRDF lobe as the incoming direction𝜔𝜔𝜔 i varies. As
can be seen in Fig. 6, both the lobe’s position and shape change.
The code 𝑡𝑘 captures the shape change and part of the rotation.
This design reduces the number of mixture components needed for
fitting the pdf compared to simpler designs.

Figure 5 illustrates our histogram-mixture architecture;𝑤𝑘 , 𝜙𝑘 , 𝑡𝑘
are encoded into a small MLP that takes the condition (𝜑𝜑𝜑,𝜔𝜔𝜔 i) as
input, and H𝑘 are implicitly encoded into a (𝜔𝜔𝜔, 𝑡𝑘 )-dependent MLP.
After training, basis histograms are baked into a 𝐾 × 𝑇 × 𝑁 × 𝑁
tensor for fast query (𝐾 basis histograms with 𝑁 × 𝑁 resolution,
𝑇 latent-code discretization levels). This scheme allows us to use
a larger MLP during training to better fit the pdf, without hurting
the speed of the inference which performs fast tensor look-ups.

Training. We use 𝐾 = 10 basis histograms for each neural ma-
terial and train the network using 𝐿2 loss between histogram and
ground truth pdf response for randomly sampled tuples (𝜑𝜑𝜑,𝜔𝜔𝜔 i,𝜔𝜔𝜔):

𝑙 =
∑︁

𝜔𝜔𝜔,𝜑𝜑𝜑,𝜔𝜔𝜔 i



 𝑝 (𝜔𝜔𝜔 |𝜑𝜑𝜑,𝜔𝜔𝜔 i) − 𝑝∗(𝜔𝜔𝜔 |𝜑𝜑𝜑,𝜔𝜔𝜔 i)


2
2 . (7)

We have found this loss to perform better than KL divergence. After
training, we tabulate histograms of resolution 𝑁 ×𝑁 = 64× 64 and
discretize the latent code 𝑡 into 𝑇 = 100 equi-spaced values.

Since 𝑡𝑘 is learned implicitly, it is not guaranteed to be distributed
uniformly in [0, 1]. To encourage such distribution, and to reduce
post-training discretization error, we add a quantization term to
the above loss: 𝑙q = | |𝑡𝑘 − 𝑡𝑘 | |22, where 𝑡𝑘 is the quantization of 𝑡𝑘 .
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Figure 5: Our histogram-mixture model sends the neural-
feature vector𝜑𝜑𝜑 and incoming direction𝜔𝜔𝜔 i to a small MLP to
infer a weight, azimuth angle, and latent code for each basis
histogram. These are then combined to produce the output
histogram. The histogram is encoded by another MLP during
training, and is then baked into a 4D tensor for efficient sam-
pling during inference. A more basic approach would use
the initial (green) MLP to directly predict a 2D sampling his-
togram from 𝜑𝜑𝜑 and𝜔𝜔𝜔 i. While fast and simple, that approach
cannot accurately model the wide variety of lobe shapes in
the large space of the condition (𝜑𝜑𝜑,𝜔𝜔𝜔 i) for every material.

Figure 6: Our histogram approach can efficiently model con-
tinuous changes in the pdf lobe shape based on the incoming
angle (columns) using the learned rotation and scalar latent
code. The change in lobe shape cannot be explained by rota-
tion alone, and the latent code 𝑡 helps significantly. Different
basis histograms (left and right) are necessary to represent
different modes of the pdf lobes and/or different spatial lo-
cations on the material.

4 RESULTS
We now present an evaluation of our three proposed methods. The
supplemental document discusses ablations around design choices.

We implemented all our sampling techniques in PyTorch [Paszke
et al. 2019] and integrated them intoMitsuba 3 [Jakob et al. 2022]. Ev-
ery sampling and pdf-evaluation call for a specific material is run on
a wavefront of rays. All results are produced using a single NVIDIA
RTX 3090 GPU. Our implementations are renderer-agnostic and
could be easily integrated into other systems. We will make our
code and data publicly available.

Stratification and MIS. For simplicity, and to ensure correctness,
all our results use independent pseudo-random sampling, showing
slopes of −1 on log-log plots due to the linear variance reduction
with increasing sample count. One can also utilize (low-discrepancy)
stratification; we have verified this helps convergence slightly and
does not change the relative ordering of the methods.

Most of our results utilize only BRDF sampling as it is our main
focus. Emitter sampling in combination with multiple importance
sampling (MIS) works as expected with our methods, since we
support all required sub-routines for pdf evaluation and sampling.
We utilize MIS in Fig. 11 as well as in the Cowhide andMetal scenes
in Fig. 9, which are all rendered with global illumination.
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Table 1: Timing breakdown for GPU rendering of NeuMIP
materials on the scene from Fig. 1. The neural-material eval-
uation itself takes 0.025 s/spp and is included in the total
rendering time. This simple scene is an almost worst-case
scenario for the overhead of (our) advanced importance sam-
pling. In practical scenes this overhead diminishes quickly.

Time Cosine Improved Analytical Norm.flow Histogram
(s/spp) weighted baseline (ours) (ours) (ours)

Rendering 0.0412 0.0441 0.0435 0.0553 0.0443
Sampling 0.0001 0.0018 0.0012 0.0065 0.0018

Table 2: Importance-sampling speed-up factors, in terms
of the relative runtime the improved baseline (Section 3.1)
needs to achieve equal quality. We also include normalizing-
flow [Xie et al. 2019] andhistogram [Zhu et al. 2021] baselines.
For each material we highlight the best improvement factor.

Material Cosine Improved Analyt. Norm.flow Norm.flow Histogram Histogram
weight. baseline (ours) (baseline) (ours) (baseline) (ours)

Egyptian 0.05× 1× 1.87× 0.82× 2.36× 0.03× 1.62×
Cowhide 0.66× 1× 1.06× 1.02× 1.48× 0.46× 1.56×
Elephant 0.84× 1× 2.50× 1.57× 4.92× 0.40× 6.12×
Giallo 0.88× 1× 0.74× 0.76× 1.28× 1.14× 1.27×
Moroccan 0.30× 1× 3.39× 0.89× 6.78× 0.13× 3.03×
Scifi 0.17× 1× 3.06× 1.56× 5.17× 0.03× 1.45×
Sheep 0.07× 1× 1.17× 0.28× 1.31× 0.01× 1.21×
Quincunx 0.73× 1× 3.86× 1.46× 3.25× 0.96× 3.76×
Melted 0.12× 1× 1.29× 0.90× 1.44× 0.85× 1.39×
Tortoise 0.83× 1× 1.02× 2.78× 3.32× 1.42× 2.88×
Victorian 0.35× 1× 1.06× 0.91× 1.17× 1.07× 1.34×
Wagon 0.23× 1× 1.16× 0.30× 1.38× 0.01× 1.07×

Performance. Table 1 provides a breakdown of the sampling and
total rendering time for direct lighting in the scene in Fig. 1. The
overhead of our importance-sampling techniques ranges from 2%
to 12% of the total rendering time. Our improved analytical and
histogram-mixture methods each use one shallow MLP, two- and
four-layer respectively, resulting in a small 2–4% overhead. Our
normalizing-flow sampler is slower as it performs three shallow-
MLP evaluations (one two-layer and two three-layer) and some
sequential batch operations, e.g., calculating the CDFs along the
polynomial intervals necessary for inverse-inference root-finding.
That sampler can generate 0.78× number of samples to render
in equal time (see Fig. 1). In more complex practical scenes, the
overhead of our neural sampling becomes even more negligible.

Pdf prediction. In Fig. 7 we plot pdfs predicted by all sampling
methods on four materials at randomly chosen conditions (𝜑𝜑𝜑,𝜔𝜔𝜔 i).
The improved, normal-mapping-aware baseline is able to find the
isotropic highlight when the pdf varies little over the surface (Goat
Leather Clover Quilt) but fails to capture anisotropy (Stylized Melted
Metal). Our analytical method improves on this shortcoming but
still suffers from the limited expressiveness of the simple analytical
lobes to cover the entire 4D conditioning space (UV and incoming
direction). Our normalizing-flow and histogram alternatives greatly
improve the fitting accuracy, leading to more efficient sampling.

Rendering results. Figures 1, 9 and 10 show equal-time compar-
isons of all methods on eleven neural materials. The Turtle Shell and
Wagon Fine Wood Panelling materials are uniformly lit, and for the

others we use a more complex environment map to show specular
effects. Cowhide Leather and Stylized Melted Metal also show global
illumination. The top three materials in Fig. 9 have nearly isotropic
highlights everywhere; Victorian Fabric has multiple lobes, while
the bottom three and Fig. 10 have anisotropy. The improvement
factors for our methods are shown in Table 2 where we also include
two additional baselines: practical normalizing-flow sampling [Xie
et al. 2019] and naive histogram sampling [Zhu et al. 2021].

Our proposed methods consistently outperform the cosine and
baseline methods used in previous works. Please note that the "base-
line" method we provide is actually significantly improved by us.
The original baseline [Sztrajman et al. 2021; Fan et al. 2022] would
fail to beat even cosine sampling, since it cannot learn normal map-
ping. We also observed that suboptimal solutions can perform well
at some (𝜑𝜑𝜑,𝜔𝜔𝜔 i) conditions but create problems in others, result-
ing in overall worse performance (see Giallo Marble, where the
analytical method is worse than baseline). Instead, the two alter-
natives we recommend are robust and can handle these complex
variations. Normalizing flows perform best for some materials, and
are especially good at capturing anisotropy (Fig. 10 and bottom
three materials in Fig. 9). Histogram mixtures perform best in some
scenarios, and are especially good at multi-coating materials with
complex variation (Victorian Fabric) while bringing just a tiny over-
head. These two methods outperform the analytical one in most
complex cases with difficult spatial BRDF variations, while remain-
ing robust on simpler materials (Cowhide Leather, Sheep Leather).
Overall, our samplers significantly reduce noise at low sampling
rates, cutting the rendering cost when more neural materials are
applied in a practical application. Table 2 shows that the benefits
range from 1.28× (Giallo Marble) to 6.78× (Moroccan Tiles), with a
mean of 2.58× corresponding to a time benefit of 158%.

The “tabulated” column in Fig. 10 employs sampling from an
impractical, near-optimal pdf that is a brute-force 2048×2048 dis-
cretization of the ground-truth BRDF distribution at each shading
point. Those results still show some small error due to using the
BRDF luminance to importance sample all three color channels.
Our practical methods achieve similar performance in comparison.

We further plot error convergence in Fig. 8 to quantify the ben-
efit of using our neural samplers. The normalizing flow mostly
performs on par with the histogram mixture, better for anisotropic
materials (equal-spp plots in first row), but the latter does best in
most common cases thanks to its much smaller overhead (equal-
time plots in second row). When the geometry is not too complex,
we recommend our histogrammixture, to benefit from the advanced
importance sampling with nearly no sacrifice in computational cost.
The normalizing flow is a good choice for anisotropic materials.

Fig. 11 shows a scene with multiple neural materials, rendered
with our normalizing-flow samplerwith 128 spp and 12 light bounces.
Our sampler handles global illumination well and can be used for
practical rendering needs. The four stools are textured with the
Elephant Leather material, the table is made of Stylized Melted Metal
and Giallo Antico Marble, creating a realistic embossing effect. The
bottle is textured with the Stylized Light Bulb Screw material.

Failure cases and limitations. As seen in some zoom-ins in Fig. 9,
it is not guaranteed that our proposed methods outperform the
improved baseline at every condition (𝜑𝜑𝜑,𝜔𝜔𝜔 i). Our analytical method
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has almost no advantage on simple isotropic materials with a single
highlight, though it helps in more challenging cases. Normalizing
flows have longer inference time (Table 1), thus not showing gains
on simpler scenes and materials. We also observe that in rare ex-
treme cases, histogram mixtures can fail to predict the pdf lobe
when its shape at a neighboring condition (𝜑𝜑𝜑,𝜔𝜔𝜔 i) changes rapidly.

Summary and recommendations. Based on our experiments, one
should use our analytical mixture method only when it is known
beforehand that the material has simple lobes with only a few
highlights. The other alternatives provide a more general solution
without bringing extra rendering overhead. In terms of wall-clock
time, in our experiments the histogram method achieves the best
variance reduction, which makes it our default recommendation.
The method is also relatively easy to use at inference time thanks to
the precomputed discretized tensor replacing a large MLP. However,
wall-clock times are heavily dependent on scenes and the renderer.
The normalizing flow may sometimes be the winning option, espe-
cially with anisotropy or in more complex settings with expensive
ray tracing or material evaluation. Future code optimization for the
MLP and RQ-spline evaluation may further speed up these meth-
ods; it is possible that hardware support for these operations on
the GPU will become available, further increasing the gains from
accurate sampling. Our improved analytic mixture is an additional
option if easy implementation and very fast sampling are priorities.

5 CONCLUSION AND FUTUREWORK
In this paper, we evaluated and compared several importance sam-
pling approaches for neural material representations. We studied
three types of methods: analytic mixtures, normalizing flows, and
histogram prediction.While simple analytic mixtures of Lambertian
and Gaussian lobes have been used before, our version outperforms
them as they lack the ability to handle dramatic normal variations,
anisotropy, and layered materials. Moreover, we introduced varia-
tions of normalizing flows and histogram mixtures based on novel
design ideas that perform well across the board, and we can recom-
mend either approach for practical neural material implementations.
These approaches provide a complete toolbox to enable the use of
spatially varying neural materials in production rendering.

Our work opens several future directions. Our sampling models,
like many neural material models themselves, are not universal and
need to be trained and precomputed for every material separately;
finding a universal evaluator and sampler architecture, where only
the feature textures change, would be valuable. Another direction
would be to jointly train sampling and evaluation models; currently
the sampling model fits the evaluation model including its approxi-
mation error. Finally, our solution is not limited to neural materials,
and could be applicable to other importance-sampling tasks where
directions are sampled conditionally on scene position, such as path
guiding, complex luminaire sampling, and portal sampling.
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Figure 7: Comparison of pdf prediction of various importance-sampling methods on four neural materials. Each column
represents the predicted pdf of the outgoing direction at a random pair of UV coordinates and incoming direction. We show the
corresponding mean squared error (MSE) and KL divergence numbers below each result w.r.t. the reference pdf plotted image.

Histogram
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Figure 8: Convergence graphs. Top row: log-log plot of pixel MSE w.r.t. samples per pixel. Bottom row: log-log plots of rendering
MSE w.r.t. rendering time. Please refer to the supplementary material for graphs on more neural materials.
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Figure 9: Equal-time rendering comparison of various neural materials under constant (top row) and environment-map
(remaining rows) lighting. Cowhide Leather and Stylized Melted Metal are rendered with global illumination. First three
materials have one isotropic highlight each; Victorian Fabric has multiple lobes; bottom three have anisotropic highlights. As in
Fig. 1, spp are adjusted for cosine weighted (1.03×) and normalizing flow (0.78×) on simple scenes to achieve equal render time.
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Figure 10: Equal-time rendering comparison of two complex
anisotropic materials. The “tabulated” column samples from
a near-optimal discretized ground-truth pdf; it takes hours
to render and is only for comparison to the reference.

Figure 11: A more complex scene containing multiple neu-
ral materials, rendered with global illumination using our
normalizing-flow sampler.
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